【題目】下列四個命題:
(1)利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)a,則事件“3a﹣1>0”發(fā)生的概率為
(2)“x+y≠0”是“x≠1或y≠﹣1”的充分不必要條件;
(3)如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β;
(4)設 是非零向量,已知命題p:若 , ,則 ;命題q:若 ,則 ,則“p∨q”是真命題.
其中說法正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個

【答案】C
【解析】解:(1)由3a﹣1>0得a> ,∵0≤a≤1,∴事件“3a﹣1>0”發(fā)生的概率P= = ,故(1)錯誤,(2))“x+y≠0”是“x≠1或y≠﹣1”的逆否命題為:若x=1且y=﹣1,則x+y=0,
則x=1且y=﹣1,是x+y=0成立的充分不必要條件,故)“x+y≠0”是“x≠1或y≠﹣1”的充分不必要條件,故(2)正確,(3)如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β的逆否命題是:
平面α內(nèi)存在直線垂直于平面β,則平面α垂直于平面β,則逆否命題為真命題,
則原命題為真命題,故(3)正確,(4)若 =0, =0,則 = ,即( =0,則 =0不一定成立,故命題p為假命題,
, ,則 平行,故命題q為真命題,則“p∨q”是真命題為真命題,故(4)正確,
故正確的是(2)(3)(4),共有3個,
故選:C
【考點精析】掌握命題的真假判斷與應用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】求滿足下列條件的曲線方程:
(1)經(jīng)過兩條直線2x+y﹣8=0和x﹣2y+1=0的交點,且垂直于直線6x﹣8y+3=0的直線
(2)經(jīng)過點C(﹣1,1)和D(1,3),圓心在x軸上的圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的左、右焦點為F1(﹣2,0),F(xiàn)2(2,0),點M(﹣2, ) 在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知斜率為k的直線l過橢圓C的右焦點F2 , 與橢圓C相交于A,B兩點.
①若|AB|= ,求直線l的方程;
②設點P( ,0),證明: 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:

ωx+φ

0

π

x

f(x)

0

3

0

﹣3

0


(1)請將表中數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象上所有點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變,得到函數(shù)g(x)的圖象,求當x∈[﹣ , ]時,函數(shù)g(x)的值域;
(3)若將y=f(x)圖象上所有點向左平移θ(θ>0)個單位長度,得到y(tǒng)=h(x)的圖象,若=h(x)圖象的一個對稱中心為( ),求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=cos( x+ )的圖象向右平移φ(φ>0)個單位,所得函數(shù)圖象關于y軸對稱,則φ的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ 為定義在R上的奇函數(shù).
(1)求f(x)的解析式;
(2)判斷f(x)的單調性,并用定義證明;
(3)若f(lnm)+f(2lnn)≤1﹣3lnm,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調,則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線實軸長為6,一條漸近線方程為4x﹣3y=0.過雙曲線的右焦點F作傾斜角為 的直線交雙曲線于A、B兩點
(1)求雙曲線的方程;
(2)求線段AB的中點C到焦點F的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機的對入院50人進行了問卷調查,得到如下的列聯(lián)表.

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為 ,
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列、數(shù)學期望以及方差.
下面的臨界值表僅供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案