已知函數(shù)數(shù)學(xué)公式函數(shù)數(shù)學(xué)公式,若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:根據(jù)x的范圍確定函數(shù)f(x)的值域和g(x)的值域,進(jìn)而根據(jù)f(x1)=g(x2)成立,推出值域的交集非空,先求當(dāng)二者的交集為空集時(shí),a的范圍,進(jìn)而可求得當(dāng)集合的交集非空時(shí)a的范圍.
解答:x∈[0,]時(shí),f(x)=為單調(diào)減函數(shù),∴f(x)∈[0,];
時(shí),為單調(diào)增函數(shù),∴f(x)∈(,1],
∴函數(shù)f(x)的值域?yàn)閇0,1];
函數(shù),x∈[0,1]時(shí),值域是[2-2a,2-]
∵存在x1、x2∈[0,1]使得f(x1)=g(x2)成立,
∴[0,1]∩[2-2a,2-]≠∅
若[0,1]∩[2-2a,2-]=∅,則2-2a>1或2-<0,即a<或a>
∴[0,1]∩[2-2a,2-]≠∅時(shí),實(shí)數(shù)a的取值范圍是
故選A
點(diǎn)評:本題主要考查了三角函數(shù)的最值,函數(shù)的值域問題,不等式的應(yīng)用,解題的關(guān)鍵是通過看兩函數(shù)值域之間的關(guān)系來確定a的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)若f(x)=cosx,x∈[0,π],試寫出f1(x),f2(x)的表達(dá)式;
(2)已知函數(shù)f(x)=x2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對應(yīng)的k;如果不是,請說明理由;
(3)已知b>0,函數(shù)f(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|
1
x
-3|
,x∈(0,+∞)
(1)畫出y=f(x)的大致圖象,并根據(jù)圖象寫出函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)0<a<
1
9
,b>
1
3
試比較f(a),f(b)的大。
(3)是否存在實(shí)數(shù)a,b,使得函數(shù)y=f(x)在[a,b]上的值域也是[a,b]?若存在,求出a,b的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx,x∈[0,
π
2
],試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
π
2
]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x2x-1+21-x
+a
(a∈R)
(1)若f(1)=1,求實(shí)數(shù)a的值并計(jì)算f(-1)+f(3)的值;
(2)若不等式f(x)≥0對任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=-1時(shí),設(shè)g(x)=f(x+b),是否存在實(shí)數(shù)b使g(x)為奇函數(shù).若存在,求出b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-2x-3.
(1)若函數(shù)f(x)在(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減,求實(shí)數(shù)a的值;
(2)是否存在實(shí)數(shù)a,使得f(x)在(
1
3
,
1
2
)
上是單調(diào)遞增函數(shù)?若存在,試求出a的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案