11.下列結(jié)論中,正確的是(  )
A.“x>2”是“x2-2x>0”成立的必要條件
B.命題“若x2=1,則x=1”的逆否命題為假命題
C.命題“p:?x∈R,x2≥0”的否定形式為“¬p:?x0∈R,x02≥0”
D..已知向量$\overrightarrow a,\overrightarrow b$,則“$\overrightarrow a∥\overrightarrow b$”是“$\overrightarrow a+\overrightarrow b=\overrightarrow 0$”的充要條件

分析 A.根據(jù)充分條件和必要條件的定義進(jìn)行判斷,B.根據(jù)逆否命題的等價(jià)性進(jìn)行判斷,
C.根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題進(jìn)行判斷,D.根據(jù)向量共線的等價(jià)條件進(jìn)行判斷.

解答 解:對(duì)于A:由x2-2x>0得x>2或x<0,
則“x>2”是“x2-2x>0”成立的充分不必要條件,故A錯(cuò)誤;
對(duì)于B:∵由x2=1得x=1或x=-1,
∴命題“若x2=1,則x=1”為假命題,則命題的逆否命題也為假命題,故B正確;
對(duì)于C:命題“p:?x∈R,x2≥0”的否定形式為“¬p:?x0∈R,x02<0”,故C錯(cuò)誤;
對(duì)于D:若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=λ$\overrightarrow$,則$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$不一定成立,若$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$,則$\overrightarrow{a}$=-$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$成立,
即“$\overrightarrow{a}$∥$\overrightarrow$”是“$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$”的必要不充分條件,故D錯(cuò)誤,
故選:B.

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及的知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.關(guān)于x、y的方程組$\left\{\begin{array}{l}{2x+my=5}\\{nx-4y=2}\end{array}\right.$的增廣矩陣經(jīng)過(guò)變換后得到$(\begin{array}{l}{1}&{0}&{3}\\{0}&{1}&{1}\end{array})$,則$(\begin{array}{l}{m}\\{n}\end{array})$=$(\begin{array}{l}{-1}\\{2}\end{array})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知等比數(shù)列{an}的公比q=2,其前4項(xiàng)和S4=60,則a3等于(  )
A.16B.8C.-16D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知全集U=R,集合A={x|1≤x≤3},B={x|2<x<4}.
(1)求圖中陰影部分表示的集合C;
(2)若非空集合D={x|4-a<x<a},且D⊆(A∪B),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)=x5-2x4+x3+x2-x-5,應(yīng)用秦九韶算法計(jì)算x=5的值是2015.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x3-ax2+b,曲線y=f(x)在點(diǎn)(2,4)處的切線方程為4x-y-4=0.
(Ⅰ)求a,b 的值;
(Ⅱ)求函數(shù)f(x)在[-1,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)A,B分別是直線y=$\frac{{2\sqrt{5}}}{5}$x和y=-$\frac{{2\sqrt{5}}}{5}$x上的動(dòng)點(diǎn),且|AB|=2$\sqrt{5}$,設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)斜率為1不經(jīng)過(guò)原點(diǎn)O,且與動(dòng)點(diǎn)P的軌跡相交于C,D兩點(diǎn),M為線段CD的中點(diǎn),直線CD與直線OM能否垂直?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{2x}{{{x^2}+1}}$,則下列說(shuō)法正確的是(  )
A.函數(shù)f(x)在(0,+∞)上有最小值B.函數(shù)f(x)在(0,+∞)上沒(méi)有最大值
C.函數(shù)f(x)在R上沒(méi)有極小值D.函數(shù)f(x)在R上有極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{p}{2}{x^2}-lnx({p∈R})$.
(1)當(dāng)p=2時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)當(dāng)p>1時(shí),求證:$({p-1})x-f(x)<\frac{{3{e^{p-3}}}}{2p-1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案