【題目】已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)記函數(shù)的導(dǎo)函數(shù)是,若不等式對任意的實數(shù)恒成立,求實數(shù)a的取值范圍;
(3)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個極值點,,且,求實數(shù)a的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)根據(jù)導(dǎo)數(shù)的幾何意義可求切線斜率,由點斜式可得切線方程;(2)先求導(dǎo),則不等式對任意的實數(shù)恒成立,轉(zhuǎn)化為對任意實數(shù)恒成立,構(gòu)造函數(shù),分類討論,即可求出的范圍;(3)先求導(dǎo)根據(jù)函數(shù)存在兩個極值點,可得,且,再化簡,可得到,構(gòu)造,,求出函數(shù)的最值即可.
(1)當(dāng)時,,其中.故.
,故.
所以函數(shù)在處的切線方程為,即.
(2)由,可得.
據(jù)題意可知,不等式對任意實數(shù)恒成立,
即對任意實數(shù)恒成立,
令,.故.
若,則,在上單調(diào)遞增,,故符合題意.
若,令,得(負(fù)舍).
當(dāng)時,,在上單調(diào)遞減,故,與題意矛盾,所以不符題意.
綜上所述,實數(shù)a的取值范圍.
(3)據(jù)題意,其中.
則.
因為函數(shù)存在兩個極值點,,所以,是方程的兩個不等的正根,
故得,且
所以
;
,
據(jù)可得,,
即,又,故不等式可簡化為,
令,,則,
所以在上單調(diào)遞增,又,
所以不等式的解為.
所以實數(shù)a的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)單調(diào)函數(shù)的定義域為,值域為,如果單調(diào)函數(shù)使得函數(shù)的值域也是,則稱函數(shù)是函數(shù)的一個“保值域函數(shù)”.已知定義域為的函數(shù),函數(shù)與互為反函數(shù),且是的一個“保值域函數(shù)”,是的一個“保值域函數(shù)”,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時,若函數(shù)存在與直線平行的切線,求實數(shù)的取值范圍;
(2)當(dāng)時,,若的最小值是,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)滿足不等式;
命題q:關(guān)于不等式對任意的恒成立.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若“”為假命題,“”為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)在數(shù)列中,若,(,,為常數(shù)),則稱為“等方差數(shù)列”.下列對“等方差數(shù)列”的判斷正確的是( )
A.若是等差數(shù)列,則是等方差數(shù)列
B.是等方差數(shù)列
C.若是等方差數(shù)列,則(,為常數(shù))也是等方差數(shù)列
D.若既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | ||||||||
職位 | A | B | C | D | 職位 | A | B | C | D |
月薪/千元 | 5 | 6 | 7 | 8 | 月薪/千元 | 4 | 6 | 8 | 10 |
獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 |
(1)若兩人分別去應(yīng)聘甲、乙兩家公司的C職位,記這兩人被甲、乙兩家公司的C職位錄用的人數(shù)和為,求的分布列;
(2)根據(jù)甲、乙兩家公司的聘用信息,如果你是該求職者,你會選擇哪一家公司?說明理由。
(3)若小王和小李分別被甲、乙兩家公司錄用,求小王月薪高于小李的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲船在點發(fā)現(xiàn)乙船在北偏東的處,里,且乙船以每小時10里的速度向正北行駛,已知甲船的速度是每小時里,問:甲船以什么方向前進(jìn),才能與乙船最快相遇,相遇時甲船行駛了多少小時?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為(為參數(shù),).以原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程是.
(1)若直線與圓有公共點,試求實數(shù)的取值范圍;
(2)當(dāng)時,過點且與直線平行的直線交圓于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,解不等式;
(2)若函數(shù)的值域為,求的取值范圍;
(3)若關(guān)于的方程的解集中恰好只有一個元素,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com