已知函數(shù)f(x)=cos(sinx)(x∈R),則f(x)是


  1. A.
    最小正周期為π的奇函數(shù)
  2. B.
    最小正周期為π的偶函數(shù)
  3. C.
    最小正周期為2π的奇函數(shù)
  4. D.
    最小正周期為2π的偶函數(shù)
B
分析:利用誘導(dǎo)公式化簡(jiǎn)f(-x)=f(x),故f(x)是偶函數(shù).利用誘導(dǎo)公式化簡(jiǎn)f(x+π)=f(x),故f(x)的周期是π.從而得到結(jié)論.
解答:∵f(x)=cos(sinx)(x∈R),
∴f(-x)=cos(sin(-x))=cos(-sinx)=cos(sinx)=f(x),故f(x)是偶函數(shù).
f(x+π)=cos(sin(x+π))=cos(-sinx)=cos(sinx)=f(x),故f(x)的周期是π.
故選 B.
點(diǎn)評(píng):本題考查正弦函數(shù)、余弦函數(shù)的奇偶性和周期性,誘導(dǎo)公式的應(yīng)用,其中,誘導(dǎo)公式的應(yīng)用是解題的關(guān)鍵和難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x+
1
x
|,x≠0
0     x=0
,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同實(shí)數(shù)解的充要條件是( 。
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)已知△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象如圖所示,則函數(shù)的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(0)≥2,f(1)≥2,方程f(x)=0在區(qū)間(0,1)上有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為
(4,+∞)
(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案