15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為E,過F1于x軸垂直的直線與橢圓C相交,其中一個(gè)交點(diǎn)為M(-$\sqrt{3}$,$\frac{1}{2}$).
(I)求橢圓C的方程;
(II)經(jīng)過點(diǎn)P(1,0)的直線l與橢圓交于A,B兩點(diǎn).
(i)若直線AE,BE的斜率為k1,k2(k1≠0,k2≠0),證明:k1•k2為定值;
(ii)若O為坐標(biāo)原點(diǎn),求△OAB面積的最大值.

分析 (I)由已知中橢圓通徑的端點(diǎn)坐標(biāo),構(gòu)造方程組,可得a,b的值,進(jìn)而可得橢圓C的方程;
(II)經(jīng)過點(diǎn)P(1,0)的直線l可設(shè)為x=my+1,
(i)設(shè)A(x1,y1),B(x2,y2),聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理,可得y1+y2=$\frac{-2m}{{m}^{2}+4}$,y1y2=$\frac{-3}{{m}^{2}+4}$,由橢圓的右頂點(diǎn)為E(2,0),可得:k1•k2=$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}•{y}_{2}}{({my}_{1}-1)({my}_{2}-1)}$=$\frac{{y}_{1}•{y}_{2}}{{{m}^{2}y}_{1}•{y}_{2}-{m({y}_{1}+y}_{2})+1}$,進(jìn)而得到答案;
(ii)由題意得:△OAB面積S=$\frac{1}{2}$×1×|y1-y2|,結(jié)合對(duì)勾函數(shù)的圖象和性質(zhì),可得△OAB面積的最大值.

解答 解:(I)由已知中過F1于x軸垂直的直線與橢圓C相交,其中一個(gè)交點(diǎn)為M(-$\sqrt{3}$,$\frac{1}{2}$).
可得:c=$\sqrt{3}$,$\frac{^{2}}{a}$=$\frac{1}{2}$,a2-b2=c2
解得:a=2,b=1,
∴橢圓C的方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$;…3分
(II)設(shè)A(x1,y1),B(x2,y2
證明:(i)∵直線l過定點(diǎn)(1,0),設(shè)x=my+1,
由$\left\{\begin{array}{l}\frac{{x}^{2}}{4}+{y}^{2}=1\\ x=my+1\end{array}\right.$得:(m2+4)y2+2my-3=0,…5分
∴y1+y2=$\frac{-2m}{{m}^{2}+4}$,y1y2=$\frac{-3}{{m}^{2}+4}$,
∵右頂點(diǎn)為E(2,0),
∴k1•k2=$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}•{y}_{2}}{({my}_{1}-1)({my}_{2}-1)}$=$\frac{{y}_{1}•{y}_{2}}{{{m}^{2}y}_{1}•{y}_{2}-{m({y}_{1}+y}_{2})+1}$=$\frac{\frac{-3}{{m}^{2}+4}}{{{m}^{2}•\frac{-3}{{m}^{2}+4}}_{1}-m•\frac{-2m}{{m}^{2}+4}+1}$=-$\frac{3}{4}$,
∴k1•k2為定值;…8分
(ii)由題意得:
△OAB面積S=$\frac{1}{2}$×1×|y1-y2|=$\frac{1}{2}$•$\frac{\sqrt{(2m)^{2}+12({m}^{2}+4)}}{{m}^{2}+4}$=$\frac{2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$,
令t=$\sqrt{{m}^{2}+3}$,t≥$\sqrt{3}$,
則S=$\frac{2t}{{t}^{2}+1}$=$\frac{2}{t+\frac{1}{t}}$≤$\frac{2}{\sqrt{3}+\frac{1}{\sqrt{3}}}$=$\frac{\sqrt{3}}{2}$,
故△OAB面積的最大值為$\frac{\sqrt{3}}{2}$…12分

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是橢圓的方程,橢圓的性質(zhì),直線與橢圓的位置關(guān)系,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=4lnx-x,g(x)=ax2+ax+1(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2))若af(x)>g(x)對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將960人隨機(jī)編號(hào)為1,2,…,960,用系統(tǒng)抽樣法從中抽取32人作調(diào)查,若分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為9,則應(yīng)在編號(hào)落入[450,750]的人中抽取的人數(shù)為( 。
A.15B.10C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知斜率為k的直線l過點(diǎn)M(1,0),且與拋物線x2=2y交于A,B兩點(diǎn),若動(dòng)點(diǎn)P在y軸的右側(cè)且滿足$\overrightarrow{OP}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}$)(O為坐標(biāo)原點(diǎn)).
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)記動(dòng)點(diǎn)P的軌跡為C,若曲線C的切線斜率為λ,滿足$\overrightarrow{MB}=λ\overrightarrow{MA}$,點(diǎn)A到y(tǒng)軸的距離為a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.下列結(jié)論:
①一次試驗(yàn)中不同的基本事件不可能同時(shí)發(fā)生;
②設(shè)k<3,k≠0,則$\frac{x^2}{3-k}-\frac{y^2}{k}=1$與$\frac{x^2}{5}+\frac{y^2}{2}=1$必有相同的焦點(diǎn);
③點(diǎn)P(m,3)在圓(x-2)2+(y-1)2=2的外部;
④已知ab<0,bc<0,則直線ax+by-c=0通過第一、三、四象限.
其中正確的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=ekx-1(k∈R).
(Ⅰ)當(dāng)k=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)+x2-kx,證明:當(dāng)x∈(0,+∞)時(shí),F(xiàn)(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知遞增數(shù)列{an}的前n項(xiàng)和為Sn,且滿足$2{S_n}=a_n^2+n$.
(I)求an
(II)設(shè)${b_n}={a_{n+1}}•{2^n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象先向左平移$\frac{π}{3}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),那么所得圖象的解析式為y=sin(4x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知矩形tanA=3tanC,E、F分別是BC、AD的中點(diǎn),且BC=2AB=2,現(xiàn)沿EF將平面ABEF折起,使平面ABEF⊥平面EFDC,則三棱錐A-FEC的外接球的體積為( 。
A.$\frac{{\sqrt{3}}}{3}π$B.$\frac{{\sqrt{3}}}{2}π$C.$\sqrt{3}π$D.$2\sqrt{3}π$

查看答案和解析>>

同步練習(xí)冊(cè)答案