12.若拋物線的焦點為(2,2),準(zhǔn)線方程為x+y-1=0,求此拋物線方程.

分析 設(shè)拋物線上點為(x,y),由拋物線的性質(zhì),知點到焦點和準(zhǔn)線的距離相等,建立方程,化簡可得拋物線方程.

解答 解:設(shè)拋物線上的點為(x,y),則$\sqrt{(x-2)^{2}+(y-2)^{2}}$=$\frac{|x+y-1|}{\sqrt{2}}$,
化簡可得拋物線方程 x2+y2-6x-6y-2xy+15=0.

點評 本題主要考查了拋物線的定義和拋物線的幾何性質(zhì),屬于基礎(chǔ)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=$\frac{[x]}{x}$(x>0),則給出以下四個結(jié)論正確的是(  )
A.函數(shù)f(x)的值域為(0,1]
B.函數(shù)f(x)沒有零點
C.函數(shù)f(x)是(0,+∞)上的減函數(shù)
D.函數(shù)g(x)=f(x)-a有且僅有3個零點時$\frac{3}{4}$<a≤$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計算
(1)$(\frac{2}{3}{)^0}+{2^{-2}}×(2\frac{1}{4}{)^{-\;\frac{1}{2}}}-(0.01{)^{0.5}}$
(2)log25625+lg$\frac{1}{100}$+lne.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù),且A>0,ω>0,-$\frac{π}{2}<ϕ<\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α)=$\frac{6}{5}$,0<α<$\frac{π}{2}$,求$f(2α+\frac{π}{12})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知x、y為自然數(shù),且滿足方程9x2-4y2=5,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖:AB是拋物線y2=2px(p>0)過焦點F的一條弦,設(shè)A(x1,y1),B(x2,y2),AB的中點M(x0,y0),相應(yīng)的準(zhǔn)線為l.
證明:
(1)以AB為直徑的圓必與準(zhǔn)線l相切;
(2)|AB|=2(x0+$\frac{p}{2}$)(焦點弦長與中點關(guān)系);
(3)|AB|=x1+x2+p;
(4)x1•x2=$\frac{{p}^{2}}{4}$,y1•y2=-p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.用數(shù)學(xué)歸納法證明:對于任意自然數(shù)n,數(shù)11n+2+122n+1是133的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)雙曲線x2-$\frac{{y}^{2}}{3}$=1的左右焦點為F1,F(xiàn)2.點P(6,6)為雙曲線內(nèi)部的一點,點M是雙曲線右支上的一點,求|MP|+$\frac{1}{2}$|MF2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,cosA=$\frac{3}{5}$,且cosB=$\frac{5}{13}$.則cosC的值是$\frac{33}{65}$.

查看答案和解析>>

同步練習(xí)冊答案