(本小題滿分10分)選修4—1: 幾何證明選講
如圖,已知與圓相切于點,經(jīng)過點的割線交圓于點,的平分線分別交于點.
(1)證明:;
(2)若,求的值.
(1)見解析;(2) =.
【解析】本試題主要是考查了三角形的相似和圓內(nèi)的性質(zhì)的綜合運用。
(1)因為結(jié)合切割線定理和弦切角定理可知角的相等,進而得到結(jié)論。
(2)由(1)知∠BAP=∠C, 又 ∵ ∠APC=∠BPA,
∴ △APC∽△BPA并結(jié)合由三角形內(nèi)角和定理可知,∠APC+∠C+∠CAP=180°可知在Rt△ABC中,=,得到求解。
解:(1)∵ PA是切線,AB是弦,
∴ ∠BAP=∠C,
又 ∵ ∠APD=∠CPE, ∴ ∠BAP+∠APD=∠C+∠CPE,
∵ ∠ADE=∠BAP+∠APD,
∠AED=∠C+∠CPE,
∴ ∠ADE=∠AED.
(2)由(1)知∠BAP=∠C, 又 ∵ ∠APC=∠BPA,
∴ △APC∽△BPA, ∴,
∵ AC=AP, ∴ ∠APC=∠C=∠BAP,
由三角形內(nèi)角和定理可知,∠APC+∠C+∠CAP=180°,
∵ BC是圓O的直徑,∴ ∠BAC=90°, ∴ ∠APC+∠C+∠BAP=180°-90°=90°,
∴ ∠C=∠APC=∠BAP=×90°=30°.
在Rt△ABC中,=, ∴ =.
科目:高中數(shù)學 來源: 題型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com