1.定義在R上的函數(shù)y=f(x)滿足:f(-x)=-f(x),f(1+x)=f(1-x),當(dāng)x∈[-1,1]時,f(x)=x3,則f(2015)的值是( 。
A.-1B.0C.1D.2

分析 由題意可得函數(shù)為奇函數(shù),它的圖象關(guān)于原點對稱,且還關(guān)于直線x=1對稱,可得函數(shù)為周期函數(shù),且周期為4,故f(2015)=f(-1).再由當(dāng)x∈[-1,1]時,f(x)=x3,可得f(-1)的值.

解答 解:定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),
故函數(shù)為奇函數(shù),它的圖象關(guān)于原點對稱.
再由f(1+x)=f(1-x),
可得f(2+x)=f[1-(x+1)]=f(-x)=-f(x),
故有f(4+x)=f(x),
故函數(shù)為周期函數(shù),且周期為4.
故f(2015)=f(-1),
再由當(dāng)x∈[-1,1]時,f(x)=x3
可得f(-1)=-1,
故選:A

點評 本題主要考查利用函數(shù)的奇偶性、對稱性、周期性求函數(shù)的值,求出周期是解題的關(guān)鍵,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.計算:sin160°cos10°-cos160°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.執(zhí)行程序框圖,則最后輸出的i=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出下列四個命題:
①命題p:?x∈R,sinx≤1.
②當(dāng)a≥1時,不等式|x-4|+|x-3|<a的解集為非空.
③當(dāng)x>1時,有$lnx+\frac{1}{lnx}≥2$.
④設(shè)復(fù)數(shù)z滿足(1-i)$\overline{z}$=2i,則z=-1-i.
其中真命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)首項為正數(shù)的等比數(shù)列{an}的前n項和為80,它的前2n項和為6 560,且前n項中數(shù)值最大的項為54,則此數(shù)列的第n項an=2•3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{1-2log6x}$的定義域為(0,$\sqrt{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)U={x∈Z|-3≤x≤3},A={1,2,3},B={-1,0,1},C={-2,0,2}
求:(1)A∪(B∩C);  
(2)A∩∁U(B∪C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn滿足$a_{n+1}^2=4{S_n}+4n+1,n∈{N^*}$,且a2,a5,a14恰好是等比數(shù)列{bn}的前三項.記數(shù)列{bn}的前n項和為Tn,若對任意的n∈N*,不等式$({T_n}+\frac{3}{2})•k≥3n-6$恒成立,則實數(shù)k的取值范圍是$[\frac{2}{27},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過橢圓C:$\frac{{x_{\;}^2}}{{a_{\;}^2}}+\frac{{y_{\;}^2}}{{b_{\;}^2}}=1$(a>b>0)的左頂點A且斜率為k的直線交橢圓C于另一點B.且點B在x軸上射影恰好為右焦點F,若$\frac{1}{6}<|k|<\frac{1}{3}$,則橢圓C的離心率取值范圍是( 。
A.($\frac{2}{3},\frac{5}{6}$)B.($\frac{2}{3}$,1)C.($\frac{1}{4},\frac{3}{4}$)D.($\frac{1}{4},\frac{5}{4}$)

查看答案和解析>>

同步練習(xí)冊答案