如圖示,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于C,若|BC|=2|BF|,且|AC|=5,求此拋物線的方程.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A(x1,y1),B(x2,y2),由直線l交拋物線準線于點C,|BC|=2|BF|,可得x2=
p
6
,|BC|=2|BF|,且|AC|=5,可得x1=5-
5p
2
,利用拋物線的性質(zhì)x1x2
p2
4
,建立關(guān)于p的方程,解之可得p,即得此拋物線的方程.
解答: 解:設(shè)A(x1,y1),B(x2,y2
∵直線l交拋物線準線于點C,|BC|=2|BF|,
∴x2=
p
6
,
由拋物線的定義,得|AF|=
p
2
+x1,
∵|BC|=2|BF|,且|AC|=5,
p
2
+x1+3(
p
2
+x2)=5
∴x1=5-
5p
2
,
由拋物線的性質(zhì),得x1x2=(5-
5p
2
)•
p
6
=
p2
4

解之得p=
5
4
,可得此拋物線的方程為y2=
5
2
x
點評:本題給出拋物線滿足的條件,求拋物線的方程.著重考查了拋物線的定義與標準方程、直線與圓錐曲線位置關(guān)系等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為1的正方形OABC中任取一點M,則點M恰好取自陰影部分的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,|F1F2|=4,P是雙曲線右支上的一點,F(xiàn)2P與y軸交于點A,△APF1的內(nèi)切圓在邊PF1上的切點為Q,若|PQ|=1,則雙曲線的離心率是( 。
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an},其前n項和Sn滿足8Sn=an2+4an+3,且a2是a1和a7的等比中項.
(Ⅰ)求數(shù)列{
a
 
n
}
的通項公式;
(Ⅱ)設(shè)bn=log2
an+3
4(n+1)
,求數(shù)列{
b
 
n
}
的前99項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{an},把a1作為新數(shù)列{bn}的第一項,把ai或-ai(i=2,3,4,…,n)作為新數(shù)列{bn}的第i項,數(shù)列{bn}稱為數(shù)列{an}的一個生成數(shù)列.例如,數(shù)列1,2,3,4,5的一個生成數(shù)列是1,-2,-3,4,5.已知數(shù)列{bn}為數(shù)列{
1
2n
}(n∈N*)的生成數(shù)列,Sn為數(shù)列{bn}的前n項和.
(Ⅰ)寫出S3的所有可能值;
(Ⅱ)若生成數(shù)列{bn}滿足的通項公式為bn=
1
2n
 , n=3k+1 , 
-
1
2n
 , n≠3k+1 , 
(k∈N),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
x
x+1
的圖象是由y=
-3x-2
x+1
的圖象怎樣平移得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
8
+
y2
4
=1
,F(xiàn)1,F(xiàn)2分別為橢圓C1的左頂點和右頂點.以F1,F(xiàn)2為焦點作與橢圓C1離心率相同的橢圓C2
(1)P為橢圓C1上異于F1,F(xiàn)2的任意一點.設(shè)直線PF1的斜率為k1,直線PF2的斜率為k2.求證:k1•k2為定值;
(2)若直線PF1交C2于A,B兩點,直線PF2交C2于C,D兩點,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖中的程序框圖,輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知l,m是兩條不同的直線,α是一個平面,且l∥α,則下列命題正確的是( 。
A、若l∥m,則m∥α
B、若m∥α,則l∥m
C、若l⊥m,則m⊥α
D、若m⊥α,則l⊥m

查看答案和解析>>

同步練習(xí)冊答案