已知(1-2x)n的展開(kāi)式中只有第3項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式的各項(xiàng)系數(shù)和等于________.

1
分析:先利用展開(kāi)式中只有第3項(xiàng)的二項(xiàng)式系數(shù)最大求出n=4,再求出其通項(xiàng)公式,令x=1,再代入求出二項(xiàng)式系數(shù)的值.
解答:因?yàn)椋?-2x)n的展開(kāi)式中只有第3項(xiàng)的二項(xiàng)式系數(shù)最大
所以n=4.
所以x=1時(shí),展開(kāi)式的各項(xiàng)系數(shù)和:(1-2)4=1.
故答案為:1.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理中的常用結(jié)論:如果n為奇數(shù),那么是正中間兩項(xiàng)的二項(xiàng)式系數(shù)最大;如果n為偶數(shù),那么是正中間一項(xiàng)的二項(xiàng)式系數(shù)最大.各項(xiàng)系數(shù)的和,只需x=1求解即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+2x)n的二項(xiàng)展開(kāi)式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,是它后一項(xiàng)系數(shù)的
56

(1)求n的值;
(2)求(1+2x)n的展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知(1+2x)n的展開(kāi)式中,所有項(xiàng)的系數(shù)之和等于81,那么這個(gè)展開(kāi)式中x3的系數(shù)是
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+2x)n的展開(kāi)式中,第六項(xiàng)和第七項(xiàng)的二項(xiàng)式系數(shù)最大.
(1)求n的值;
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1-2x)n的展開(kāi)式中,二項(xiàng)式系數(shù)的和為64,則它的二項(xiàng)展開(kāi)式中,系數(shù)最大的是第
5
5
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南充三模)已知(1-2x)n的展開(kāi)式中只有第3項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式的各項(xiàng)系數(shù)和等于
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案