【題目】已知命題表示雙曲線,命題表示橢圓

若命題為真命題,求實(shí)數(shù)的取值范圍.

判斷命題為真命題是命題為真命題的什么條件(請(qǐng)用簡要過程說明是充分不必要條件、必要不充分條件、充要條件 既不充分也不必要條件中的哪一個(gè))

【答案】(1)(2)的必要不充分條件.

【解析】

試題(1)因?yàn)?/span>為雙曲線,而雙曲線方程的特征為項(xiàng)的系數(shù)符號(hào)相反,所以,(2)因?yàn)?/span>為橢圓,而橢圓方程的特征為項(xiàng)的系數(shù)符號(hào)為正且不等,所以,即,由于包含,所以的必要不充分條件.利用集合之間包含關(guān)系判斷命題充要關(guān)系是一個(gè)常用且有效的方法.

試題解析:(1)命題表示雙曲線為真命題,則, 3分

; 5分

命題表示橢圓為真命題,, 8分

, 10分

的必要不充分條件. 14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在x軸上的橢圓C1的長軸長為8,短半軸為2,拋物線C2的頂點(diǎn)在原點(diǎn)且焦點(diǎn)為橢圓C1的右焦點(diǎn).

(1)求拋物線C2的標(biāo)準(zhǔn)方程;

(2)過(1,0)的兩條相互垂直的直線與拋物線C2有四個(gè)交點(diǎn),求這四個(gè)點(diǎn)圍成四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面上給定相異兩點(diǎn)AB,設(shè)P點(diǎn)在同一平面上且滿足,當(dāng)時(shí),P點(diǎn)的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個(gè)圓為阿波羅尼斯圓,現(xiàn)有雙曲線,),A,B為雙曲線的左、右頂點(diǎn),C,D為雙曲線的虛軸端點(diǎn),動(dòng)點(diǎn)P滿足面積的最大值為,面積的最小值為4,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)有一塊三角形空地,如圖ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計(jì)劃在這片空地上進(jìn)行綠化和修建運(yùn)動(dòng)場所,在ABC內(nèi)的P點(diǎn)處有一服務(wù)站(其大小可忽略不計(jì)),開發(fā)商打算在AC邊上選一點(diǎn)D,然后過點(diǎn)P和點(diǎn)D畫一分界線與邊AB相交于點(diǎn)E,在ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運(yùn)動(dòng)場所. 現(xiàn)已知點(diǎn)P處的服務(wù)站與AC距離為10米,與BC距離為100. 設(shè)米,試問取何值時(shí),運(yùn)動(dòng)場所面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次動(dòng)物保護(hù)知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參'與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

15

5

10

若規(guī)定問卷得分不低于70分的市民稱為“動(dòng)物保護(hù)關(guān)注者”,則山圖中表格可得列聯(lián)表如下:

非“動(dòng)物保護(hù)關(guān)注者”

是“動(dòng)物保護(hù)關(guān)注者”

合計(jì)

10

45

55

15

30

45

合計(jì)

25

75

100

1)請(qǐng)判斷能否在犯錯(cuò)誤的概率不超過005的前提下認(rèn)為“動(dòng)物保護(hù)關(guān)注者”與性別有關(guān)?

2)若問卷得分不低于80分的人稱為“動(dòng)物保護(hù)達(dá)人”.現(xiàn)在從本次調(diào)查的“動(dòng)物保護(hù)達(dá)人”中利用分層抽樣的方法隨機(jī)抽取6名市民參與環(huán)保知識(shí)問答,再從這6名市民中抽取2人參與座談會(huì),求抽取的2名市民中,既有男“動(dòng)物保護(hù)達(dá)人”又有女動(dòng)物保護(hù)達(dá)人”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,斜率為的直線與拋物線交于兩點(diǎn).

1)求的最小值;

2)若,直線的斜率都存在,且;探究:直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,平面平面相交于點(diǎn).

1)求證:;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)當(dāng)時(shí),求過點(diǎn)(01)且和曲線相切的直線方程;

(2)若函數(shù)上有兩個(gè)不同的零點(diǎn),求實(shí)致的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)的和為,公差,若,,成等比數(shù)列,;數(shù)列滿足:對(duì)于任意的,等式都成立.

1)求數(shù)列的通項(xiàng)公式;

2)證明:數(shù)列是等比數(shù)列;

3)若數(shù)列滿足,試問是否存在正整數(shù),(其中),使,,成等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案