分析 (1)利用函數(shù)值以及對(duì)稱軸與單調(diào)區(qū)間的關(guān)系,列出不等式求解即可.
(2)利用對(duì)稱軸以及函數(shù)值,求出a,b,利用二次函數(shù)的閉區(qū)間上的最值,求解即可.
解答 解:(1)∵函數(shù)f(x)在區(qū)間[2,+∞)上遞減,∴$\frac{a}{2}≤2$,解得a≤4,
又f(4)=-3,∴b=-4a+13,
∵a≤4,∴b≥-3.
(2)∵$\left\{\begin{array}{l}\frac{a}{2}=1\\-16+4a+b=-3\end{array}\right.$解得$\left\{\begin{array}{l}a=2\\ b=5.\end{array}\right.$
∴f(x)=-x2+2x+5=-(x-1)2+6,x∈[-3,3],
∴f(x)min=f(-3)=-10,f(x)max=f(1)=6,
∴f(x)在[-3,3]上的值域?yàn)閇-10,6],
∴l(xiāng)og2m∈[-10,6],即m∈[2-10,26],
∴m的最大值為26=64.
點(diǎn)評(píng) 本題考查二次函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,對(duì)稱軸與單調(diào)區(qū)間的關(guān)系,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 16 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [3-$\sqrt{3}$,2) | B. | $(\sqrt{5}-1,\sqrt{3})$ | C. | $(1,\sqrt{3})$ | D. | $(1,3-\sqrt{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)+g(x)是奇函數(shù) | B. | f(x)-g(x)是偶函數(shù) | C. | f(x)•g(x)是奇函數(shù) | D. | f(x)•g(x)是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com