設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c且acosB-bcosA=c,則的值為   
【答案】分析:先根據(jù)正弦定理得到sinAcosB-sinBcosA=sinC,再由兩角和與差的正弦公式進行化簡可得到sinAcosB=4sinBcosA,然后轉(zhuǎn)化為正切的形式可得到答案.
解答:解:由acosB-bcosA=c及正弦定理可得
sinAcosB-sinBcosA=sinC,即sinAcosB-sinBcosA=sin(A+B),
即5(sinAcosB-sinBcosA)=3(sinAcosB+sinBcosA),
即sinAcosB=4sinBcosA,因此tanA=4tanB,
所以=4.
故答案為:4
點評:本題主要考查正弦定理的應(yīng)用和切化弦的基本應(yīng)用.三角函數(shù)的公式比較多,要注意公式的記憶和熟練應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.若b=
3
,c=1,B=60°
,則角C=
 
°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c
(1)求證:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,試求
tanA
tanB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函數(shù)f(x)的最大值和最小值,并寫出相應(yīng)的x的值;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,滿足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長;
(2)若直線l:
x
a
+
y
b
=1
恒過點D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步練習冊答案