(本題滿分12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/b/1vw273.gif" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷函數(shù)的單調(diào)性
(3)若對(duì)任意的,不等式恒成立,求的取值范圍
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/42/2/1ont03.gif" style="vertical-align:middle;" />在定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/b/1vw273.gif" style="vertical-align:middle;" />上是奇函數(shù),所以=0,即…….....3分
(2)由(Ⅰ)知,
設(shè)則
因?yàn)楹瘮?shù)y=2在R上是增函數(shù)且 ∴>0
又>0 ∴>0即
∴在上為減函數(shù). ………………………………....………...…..7分
(3)因是奇函數(shù),從而不等式:
等價(jià)于,……………….……………………...….8分
因為減函數(shù),由上式推得:.
即對(duì)一切有:, ………..………………………….………....10分
從而判別式………..…..……………………………..……...12分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/79/f/bndng4.png" style="vertical-align:middle;" />,對(duì)于任意正實(shí)數(shù)恒有,且當(dāng)時(shí),
(1)求的值;
(2)求證:在上是增函數(shù);
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)若,證明在區(qū)間上是增函數(shù);
(2)若在區(qū)間上是單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知二次函數(shù)的最小值為1,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),且定義域?yàn)椋?,2).
(1)求關(guān)于x的方程+3在(0,2)上的解;
(2)若是定義域(0,2)上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于x的方程在(0,2)上有兩個(gè)不同的解,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)镽的函數(shù)f(x)滿足f(f(x)-x2+x)=f(x)-x2+x.
(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)設(shè)有且僅有一個(gè)實(shí)數(shù)x0,使得f(x0)= x0,求函數(shù)f(x)的解析表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
⑴求的值;
⑵判斷函數(shù)在定義域內(nèi)的單調(diào)性并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)如圖,函數(shù)y=|x|在x∈[-1,1]的圖象上有兩點(diǎn)A、B,AB∥
Ox軸,點(diǎn)M(1,m)(m是已知實(shí)數(shù),且m>)是△ABC的邊BC的中點(diǎn)。
(Ⅰ)寫(xiě)出用B的橫坐標(biāo)t表示△ABC面積S的函數(shù)解析式S=f(t);
(Ⅱ)求函數(shù)S=f(t)的最大值,并求出相應(yīng)的C點(diǎn)坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com