在數(shù)列{an}中,若對(duì)任意的n均有an+an+1+an+2為定值(n∈N*),且a7=2,a9=3,a98=4,則此數(shù)列{an}的前100項(xiàng)的和S100=________.

299
分析:由題意可知an+3=an,所以a1+a2+a3=a7+a8+a9=2+3+4=9,∴S100=33×(a1+a2+a3)+a100.由此能夠求出S100
解答:∵在數(shù)列{an}中,若對(duì)任意的n均有an+an+1+an+2為定值(n∈N*),∴an+3=an
∵98=3×32+2,∴a98=a2=4,a8=a2=4,
a1+a2+a3=a7+a8+a9=2+3+4=9,
∴S100=33×(a1+a2+a3)+a100
=33×9+2=299.
答案:299.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=
1
2
,an=
1
1-an-1
(n≥2,n∈N*),則a2010等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷;
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②{(-1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
其中正確命題序號(hào)為( 。
A、①②③B、①②④C、①②③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=2,an=
1
1-an-1
(n≥2,n∈N*),則a7
等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=2,a2=6,且當(dāng)n∈N*時(shí),an+2是an•an+1的個(gè)位數(shù)字,則a2011=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}具有如下性質(zhì):①a1為正整數(shù);②對(duì)于任意的正整數(shù)n,當(dāng)an為偶數(shù)時(shí),an+1=
a n
2
;當(dāng)an為奇數(shù)時(shí),an+1=
an+1
2
.在數(shù)列{an}中,若當(dāng)n≥k時(shí),an=1,當(dāng)1≤n<k時(shí),an>1(k≥2,k∈N*),則首項(xiàng)a1可取數(shù)值的個(gè)數(shù)為
 
(用k表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案