在數(shù)軸上的線段[0,3]上任取一點,則此點對應(yīng)的實數(shù)小于1的概率是( 。
分析:根據(jù)題意先確定是幾何概型中的長度類型,由“此數(shù)小于1“求出構(gòu)成的區(qū)域長度,再求出在區(qū)間[0,3]上任取一個數(shù)x構(gòu)成的區(qū)域長度,再求兩長度的比值.
解答:解:此數(shù)小于1,
則構(gòu)成的區(qū)域長度為:1,
在區(qū)間[0,3]上任取一個數(shù)x構(gòu)成的區(qū)域長度為3,
使得不等式x2-3x+2>0成立的概率為
1
3
;
故選A.
點評:本題主要考查概率的建模和解模能力,度量尺度是長度,思路是先求得試驗的全部構(gòu)成的長度和構(gòu)成事件的區(qū)域長度,再求比值,屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下圖表示了一個由區(qū)間(0,1)到實數(shù)集的映射過程:區(qū)間(0,1)精英家教網(wǎng)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖1;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),如圖3,圖3中直線AM與x軸交于點N  n  0,則m的象就是n,記作f(m)=n,下列正確命題的序號是
 
.(填出所有正確命題的序號)
①f(
1
2
)=0;
②f(x)是奇函數(shù);
③f(x)在定義域上單調(diào)遞增;
④f(x)的圖象關(guān)于點(
1
2
,0)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),在圖形變化過程中,圖①中線段AM的長度對應(yīng)于圖③中的弧ADM的長度,如圖③.圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.

給出下列命題:①f(
14
)=1;②f(x)是奇函數(shù);③f(x)在定義域上單調(diào)遞增,則所有真命題的序號是
.(填出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖揭示了一個由區(qū)間(0,1)到實數(shù)集R上的對應(yīng)過程:區(qū)間(0,1)內(nèi)的任意實數(shù)m與數(shù)軸上的線段AB(不包括端點)上的點M一一對應(yīng)(圖一),將線段AB圍成一個圓,使兩端A,B恰好重合(圖二),再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1)(圖三).圖三中直線AM與x軸交于點N(n,0),由此得到一個函數(shù)n=f(m),則下列命題中正確的序號是( 。
(1)f(
1
2
)=0;     
(2)f(x)是偶函數(shù);   
(3)f(x)在其定義域上是增函數(shù);
(4)y=f(x)的圖象關(guān)于點(
1
2
,0)對稱.
A、(1)(3)(4)
B、(1)(2)(3)
C、(1)(2)(4)
D、(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東莞市西夏中學(xué)2008屆高三數(shù)學(xué)(理科)第一次高考模擬試卷 題型:022

在數(shù)軸上的線段[0,3]上任投一點,則此點所對應(yīng)的實數(shù)小于1的概率是________

查看答案和解析>>

同步練習(xí)冊答案