(2010•天津模擬)如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求證:BF∥平面ACGD;
(Ⅱ)求二面角A-EG-D的正切值;
(Ⅲ) 求六面體ABCDEFG的體積.
分析:(Ⅰ)設(shè)DG的中點(diǎn)為M,連接AM、FM,證明BF平行平面ACGD內(nèi)的直線AM,即可證明BF∥平面ACGD;
(Ⅱ)連接EG,取EG的中點(diǎn)O,連接DO,AO,則易得∠AOD為所求二面角的平面角,從而可求二面角A-EG-D的正切值;
(Ⅲ)利用V多面體ABC-DEFG=V三棱柱ADM-BEF+V三棱柱ABC-MFG直接求五面體ABCDEFG的體積.
解答:證明:(Ⅰ)設(shè)DG的中點(diǎn)為M,連接AM、FM,
則由已知條件易證四邊形DEFM是平行四邊形,
所以MF∥DE,且MF=DE
又∵AB∥DE,且AB=DE
∴MF∥AB,且MF=AB
∴四邊形ABMF是平行四邊形,即BF∥AM,
又BF?平面ACGD 故BF∥平面ACGD
(Ⅱ)連接EG,取EG的中點(diǎn)O,連接DO,AO
∵DE=DG=2,∴DO⊥EG,DO=
2

∵AD⊥平面DEFG,∴AO⊥EG
∴∠AOD為所求二面角的平面角
∵AD=2,∴tan∠AOD=
2
2
=
2

∴二面角A-EG-D的正切值為
2

(Ⅲ)V多面體ABC-DEFG=V三棱柱ADM-BEF+V三棱柱ABC-MFG=DE×S△ADM+AD×S△MFG
=
1
2
×2×1+2×
1
2
×2×1
=4.
點(diǎn)評(píng):本題考查直線與平面平行的判定,棱柱、棱錐、棱臺(tái)的體積,考查邏輯思維能力,空間想象能力,考查面面角,關(guān)鍵是根據(jù)題意作出二面角的平面角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•天津模擬)給出下列四個(gè)命題:
①已知a=
π
0
sinxdx,
點(diǎn)(
3
,a)
到直線
3
x-y+1=0
的距離為1;
②若f'(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
③m≥-1,則函數(shù)y=log
1
2
(x2-2x-m)
的值域?yàn)镽;
④在極坐標(biāo)系中,點(diǎn)P(2,
π
3
)
到直線ρsin(θ-
π
6
)=3
的距離是2.
其中真命題是
①③④
(把你認(rèn)為正確的命題序號(hào)都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•天津模擬)某幾何體的三視圖,其中正視圖是腰長(zhǎng)為2的等腰三角形,側(cè)視圖是半徑為1的半圓,則該幾何體的表面積是
2(π+
3
2(π+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•天津模擬)已知a∈R,且
-a+i
1-i
為純虛數(shù),則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•天津模擬)如果圓(x-a)2+(y-a)2=8上總存在兩個(gè)點(diǎn)到原點(diǎn)的距離為
2
,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•天津模擬)正項(xiàng)等比數(shù)列{an}滿足a2a4=1,S3=13,bn=log3an,則數(shù)列{bn}的前10項(xiàng)和是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案