【題目】已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=2x , 若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,則實數(shù)a的取值范圍是

【答案】[ ]
【解析】解:解:∵f(x)為定義在R上的奇函數(shù),g(x)為定義在R上的偶函數(shù),

∴f(﹣x)=﹣f(x),g(﹣x)=g(x),

又∵由f(x)+g(x)=2x,結(jié)合f(﹣x)+g(﹣x)=﹣f(x)+g(x)=2x,

∴f(x)=﹣ (2x﹣2x),g(x)= (2x+2x).

等式af(x)+g(2x)=0,化簡為﹣ (2x﹣2x)+ (22x+22x)=0.

∵x∈[1,2],∴ ≤2x﹣2x ,

令t=2x﹣2x,則t>0,因此將上面等式整理,得:a=t+ ,

函數(shù)h(t)=t+ 在[ ]遞增, ≤t+ ,

則實數(shù)a的取值范圍是[ ],

所以答案是:[ ].

【考點精析】利用函數(shù)奇偶性的性質(zhì)對題目進行判斷即可得到答案,需要熟知在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣x2+2a+b(x∈R)的圖象在x=0處的切線為y=bx.(e為自然對數(shù)的底數(shù)).
(Ⅰ)求a,b的值;
(Ⅱ)若k∈Z,且f(x)+ (3x2﹣5x﹣2k)≥0對任意x∈R恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位打字員在兩臺電腦上各自輸入A,B兩種類型的文件的部分文字才能使這兩類文件成為成品.已知A文件需要甲輸入0.5小時,乙輸入0.2小時;B文件需要甲輸入0.3小時,乙輸入0.6小時.在一個工作日中,甲至多只能輸入6小時,乙至多只能輸入8小時,A文件每份的利潤為60元,B文件每份的利潤為80元,則甲、乙兩位打字員在一個工作日內(nèi)獲得的最大利潤是元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)某班50名學(xué)生在一次數(shù)學(xué)測試中,成績?nèi)拷橛?/span>50100之間,將測試結(jié)果按如下方式分成五組:第一組[50,60),第二組[60,70),,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.

)若成績大于或等于60且小于80,認為合格,求該班在這次數(shù)學(xué)測試中成績合格的人數(shù);

)從測試成績在[5060∪[90,100]內(nèi)的所有學(xué)生中隨機抽取兩名同學(xué),設(shè)其測試成績分別為m、n,求事件“|m﹣n|10”概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x>0),m∈R.
(1)若函數(shù)f(x)有零點,求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)的圖象在點(1,f(x))處的切線的斜率為 ,且函數(shù)f(x)的最大值為M,求證:1<M<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標原點,橢圓的左、右焦點分別為,離心率,橢圓上的點到焦點的最短距離為

(1)求橢圓C的標準方程;

(2)設(shè)T為直線上任意一點,過的直線交橢圓C于點P,Q,且為拋物線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅(公元前5~6世紀)是我國齊梁時代的數(shù)學(xué)家,是祖沖之的兒子.他提出了一條原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.設(shè)由橢圓 =1(a>b>0)所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(如圖)(稱為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx﹣cos2x﹣
(Ⅰ)求函數(shù)f(x)的對稱軸方程;
(Ⅱ)將函數(shù)f(x)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移 個單位,得到函數(shù)g(x)的圖象.若a,b,c分別是△ABC三個內(nèi)角A,B,C的對邊,a=2,c=4,且g(B)=0,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,圓 的圓心在橢圓上,點到橢圓的右焦點的距離為.

(1)求橢圓的標準方程;

(2)過點作互相垂直的兩條直線,且交橢圓兩點,直線交圓 兩點,且的中點,求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案