函數(shù)y=
x2,x>0
2,x=0
-x2,x<0
,右圖是計(jì)算函數(shù)值y的程序程框圖,在空白框中應(yīng)該填上
x=0
x=0
分析:由于該程序的作用是輸出y=
x2,x>0
2,x=0
-x2,x<0
的函數(shù)值,因此在程序中要比較數(shù)與數(shù)的大小,空白判斷框是判斷x與0的大小,根據(jù)上下文之間的關(guān)系,空白框應(yīng)該填上 x=0.
解答:解:則流程圖可知,該程序的作用輸出y=
x2,x>0
2,x=0
-x2,x<0
的函數(shù)值,
空白判斷框是判斷x與0的大小,當(dāng)x=0時(shí),輸出y=2,否則輸出y=-x2,
故空白判斷框應(yīng)填入:x=0
故答案為:x=0.
點(diǎn)評(píng):算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2(x>0)的圖象在點(diǎn)(ak,ak2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為ak+1( k為正整數(shù)),其中a1=16.設(shè)正整數(shù)數(shù)列{bn}滿足:b1=
a1
a2
,b2=a3+a4
,當(dāng)n≥2時(shí),有|bn2-bn-1bn+1|<
1
2
bn-1

(Ⅰ)求b1,b2,b3,b4的值;
(Ⅱ)求數(shù)列{bn}的通項(xiàng);
(Ⅲ)記Tn=
12
b1
+
22
b2
+
32
b3
+…+
n2
bn
,證明:對(duì)任意n∈N*Tn
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)a,b,λ都為正數(shù),且a≠b,對(duì)于函數(shù)y=x2(x>0)圖象上兩點(diǎn)A(a,a2),B(b,b2).
(1)若
AC
CB
,則點(diǎn)C的坐標(biāo)是
 
;
(2)過點(diǎn)C作x軸的垂線,交函數(shù)y=x2(x>0)的圖象于D點(diǎn),由點(diǎn)C在點(diǎn)D的上方可得不等式:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2-1(x<0)
2x-1(x≥0)
的零點(diǎn)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2(x>0)的圖象在點(diǎn)(ak,ak2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為ak+1,k為正整數(shù),a1=
1
2
,則an=
(
1
2
)
n
(
1
2
)
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•宣武區(qū)一模)函數(shù)y=x2(x<0)的反函數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案