(2010•宿州三模)等差數(shù)列{an}中,2(a1+a4+a7)+3(a9+a11)=24,則其前13項和為(  )
分析:由已知,根據(jù)通項公式,能求出a7=2,S13運用求和公式能得出S13=13a7,問題解決.
解答:解:∵2(a1+a1+3d+a1+6d)+3(a1+8d+a1+10d)
=2(3a1+9d)+3(2a1+18d)
=12a1+72d=24,
∴a1+6d=2,
即a7=2
S13=
(a1+a13) × 13
2
=
2a7×13
2
=2×13=26
故選B
點評:本題考查等差數(shù)列的通項公式,前項和公式,注意簡單性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•宿州三模)已知二次曲線
x2
4
+
y2
m
=1,則當m∈[-2,-1]
時,該曲線的離心率的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•宿州三模)若將函數(shù)f(x)=Asin(ωx+
π
6
)
(A>0,ω>0)的圖象向左平
π
6
移個單位后得到的圖象關于原點對稱,則ω的值可能為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•宿州三模)曲線y=
2
cosx
-
π
4
x=
π
4
處的切線方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•宿州三模)設不等式組
x-y+5≥0
x+y≥a
0≤x≤2
所表示的平面區(qū)域是一個三角形,則此平面區(qū)域面積的最大值
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•宿州三模)已知函數(shù)f(x)=x2-2alnx,g(x)=
13
x3-x2

(1)討論函數(shù)f(x)的單調區(qū)間;
(2)若f(x)≥g'(x)對于任意的x∈(1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案