【題目】設函數(shù), .
(1)當 (為自然對數(shù)的底數(shù))時,求曲線在點處的切線方程;
(2)討論函數(shù)的零點的個數(shù);
(3)若對任意, 恒成立,求實數(shù)的取值范圍.
【答案】(I) ;(II)見解析;(III)。
【解析】試題分析:(1)當時, , ,由此利用導數(shù)性質(zhì)能求出的極小值;(2)由,得,令,則, ,由此利用導數(shù)性質(zhì)能求出函數(shù)零點的個數(shù);(3)當時, 在上恒成立,由此能求出的取值范圍.
試題解析:(1)當時, ,所以, ,切點坐標為所以曲線在點處的切線方程為.
(2)因為函數(shù)令,得,設所以,當時, ,此時在上為增函數(shù);當時, ,此時在上為減函數(shù),所以當時, 取極大值,
令,即,解得或,由函數(shù)的圖像知:
當時,函數(shù)和函數(shù)無交點;
當時,函數(shù)和函數(shù)有且僅有一個交點;
當時,函數(shù)和函數(shù)有兩個交點;
④當時,函數(shù)和函數(shù)有且僅有一個交點。
綜上所述,當時,函數(shù)無零點;
當或時,函數(shù)有且僅有一個零點
當時,函數(shù)有兩個零點
(3)對任意恒成立,等價于恒成立,設則在上單調(diào)遞減,所以在上恒成立,所以在上恒成立,因為,所以,當且僅當時, ,
所以實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是遞增的等差數(shù)列,前n項和為Sn , a1=1,且a1 , a2 , S3成等比數(shù)列.
(1)求an及Sn;
(2)求數(shù)列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣ (a∈R).
(1)若a=1,求函數(shù)f(x)在[0,2]上的最大值;
(2)若對任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有垣厚五尺,兩鼠對穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側(cè)面對面打洞,已知第一天兩鼠都打了一尺長的洞,以后大鼠每天打的洞長是前一天的2倍,小鼠每天打的洞長是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時各打了幾尺長的洞?設兩鼠x 天后相遇(假設兩鼠每天的速度是勻速的),則x=( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點M(﹣ ),N是圓C:(x﹣ )2+y2=16(C為圓心) 上的動點,MN的垂直平分線與NC交于點E.
(1)求動點E的軌跡方程C1;
(2)直線l與軌跡C1交于P,Q兩點,與拋物線C2:x2=4y交于A,B兩點,且拋物線C2在點A,B處的切線垂直相交于S,設點S到直線l的距離為d,試問:是否存在直線l,使得d= ?若存在,求直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知X和Y是兩個分類變量,由公式K2= 算出K2的觀測值k約為7.822根據(jù)下面的臨界值表可推斷( )
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.推斷“分類變量X和Y沒有關系”犯錯誤的概率上界為0.010
B.推斷“分類變量X和Y有關系”犯錯誤的概率上界為0.010
C.有至少99%的把握認為分類變量X和Y沒有關系
D.有至多99%的把握認為分類變量X和Y有關系
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對里約奧運會的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”。已知“體育迷”中有10名女性。
(1)試求“體育迷”中的男性觀眾人數(shù);
(2)據(jù)此資料完成列聯(lián)表,你是否認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
合計 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
臨界值表供參考參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f′(x)是函數(shù)y=f(x)的導數(shù),f′′(x)是f′(x)的導數(shù),若方程f′′(x)有實數(shù)解x0 , 則稱點(x0 , f(x0))為函數(shù)y=f(x)的“拐點”.某同學經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.設函數(shù)f(x)= x3﹣ x2+3x﹣ ,請你根據(jù)這一發(fā)現(xiàn),計算f( )+f( )+f( )+…+f( )= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com