已知AB是圓O的直徑,C為圓O上一點(diǎn),CD⊥AB于點(diǎn)D,弦BE與CD、AC分別交于點(diǎn)M、N,且MN=MC
(1)求證:MN=MB;
(2)求證:OC⊥MN。
詳見解析
解析試題分析:(1)連結(jié),根據(jù)直徑所對的圓周角是直角,得,根據(jù)等量代換得,最后利用三角形的性質(zhì)即可得出,從而得到;
(2)設(shè),根據(jù),得到,再由(1)知,,等量代換得,即即可證出結(jié)論.此題比較基礎(chǔ),屬于基礎(chǔ)題型,平時(shí)多加練習(xí),能夠拿滿分.
試題解析:證明:(1)連結(jié)AE,BC,∵AB是圓O的直徑,∴∠AEB=90°,∠ACB=90°∵M(jìn)N=MC,∴∠MCN=∠MNC又∵∠ENA=∠MNC,∴∠ENA=∠MCN∴∠EAC=∠DCB,∵∠EAC=∠EBC,∴∠MBC=∠MCB,∴MB=MC∴MN=MB. 5分
(2)設(shè)OC∩BE=F,∵OB=OC,∴∠OBC=∠OCB
由(1)知,∠MBC=∠MCB,∴∠DBM=∠FCM.又∵∠DMB=∠FMC
∴∠MDB=∠MFC,即∠MFC=90°∴OC⊥MN. 10分
考點(diǎn):與圓有關(guān)的問題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,E是圓O內(nèi)兩弦AB和CD的交點(diǎn),過AD延長線上一點(diǎn)F作圓O的切線FG,G為切點(diǎn),已知EF=FG.
求證:(1);(2)EF//CB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知和相交于A、B兩點(diǎn),過A點(diǎn)作切線交于點(diǎn)E,連接EB并延長交于點(diǎn)C,直線CA交于點(diǎn)D,
(1)當(dāng)點(diǎn)D與點(diǎn)A不重合時(shí)(如圖1),證明:ED2=EB·EC;
(2)當(dāng)點(diǎn)D與點(diǎn)A重合時(shí)(如圖2),若BC=2,BE=6,求的直徑長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是圓的直徑,是延長線上的一點(diǎn),是圓的割線,過點(diǎn)作的垂線,交直線于點(diǎn),交直線 于點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為.
(1)求證:四點(diǎn)共圓;(2)若,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長為m,AC的長為n,AD,AB的長是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.
(1)證明:C,B,D,E四點(diǎn)共圓;
(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,D,E分別為△ABC邊AB,AC的中點(diǎn),直線DE交△ABC的外接圓于F,G兩點(diǎn),若CF∥AB,證明:
(1)CD=BC;
(2)△BCD∽△GBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知PE切⊙O于點(diǎn)E,割線PBA交⊙O于A,B兩點(diǎn),∠APE的平分線和AE,BE分別交于點(diǎn)C,D.
求證:(1)CE=DE;(2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com