已知對稱軸是坐標(biāo)軸的橢圓半短軸長為5,兩焦點,過F1的弦為AB的周長等于24,則該橢圓方程是

[  ]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
2
,過拋物線C1的焦點F作傾斜角為
π
4
的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
(1)求點P和Q的坐標(biāo);
(2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標(biāo)軸的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于中心在原點,且對稱軸是坐標(biāo)軸的雙曲線的標(biāo)準(zhǔn)方程,若已知a=6,b=8,則其方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•東城區(qū)二模)已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
2
,過拋物線C1的焦點F作傾斜角為
π
4
的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
(Ⅰ)求點P和Q的坐標(biāo);
(Ⅱ)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標(biāo)軸的雙曲線的方程;
(Ⅲ)設(shè)點A(t,0)(常數(shù)t>4),當(dāng)a在閉區(qū)間〔1,2〕內(nèi)變化時,求△APQ面積的最大值,并求相應(yīng)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):8.3 拋物線(解析版) 題型:解答題

已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為,過拋物線C1的焦點F作傾斜角為的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
(1)求點P和Q的坐標(biāo);
(2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標(biāo)軸的雙曲線的方程.

查看答案和解析>>

同步練習(xí)冊答案