10.已知正四棱臺(tái)側(cè)棱長(zhǎng)為5,上底面邊長(zhǎng)和下底面邊長(zhǎng)分別為2和5,求該四樓臺(tái)的高和斜高.

分析 取上底A1B1C1D1的中心O1和下底ABCD的中心O,連結(jié)OO1,過O1作O1F⊥A1B1,交A1B1于F,過O作OE⊥AB,交AB于E,過F作FN⊥OE,交OE于N,正四棱臺(tái)的斜高B1K,正四棱臺(tái)的高OO1=FN,由此能求出正四棱臺(tái)的高和斜高.

解答 解:取上底A1B1C1D1的中心O1和下底ABCD的中心O,連結(jié)OO1,
過O1作O1F⊥A1B1,交A1B1于F,過O作OE⊥AB,交AB于E,
過F作FN⊥OE,交OE于N,
正四棱臺(tái)的斜高B1K=EF=$\sqrt{B{{B}_{1}}^{2}-(\frac{AB-{A}_{1}{B}_{1}}{2})^{2}}$=$\sqrt{25-(\frac{3}{2})^{2}}$=$\frac{\sqrt{91}}{2}$.
則正四棱臺(tái)的高OO1=FN=$\sqrt{E{F}^{2}-(OE-{O}_{1}F)^{2}}$=$\sqrt{\frac{91}{4}-9}$=$\frac{\sqrt{55}}{2}$.
∴正四棱臺(tái)的高是$\frac{\sqrt{55}}{2}$,斜高是$\frac{\sqrt{91}}{2}$.

點(diǎn)評(píng) 本題考查正四棱臺(tái)的高和斜高的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力和下四棱臺(tái)的結(jié)構(gòu)特征的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(1)過橢圓的左焦點(diǎn)F引橢圓的割線,求截得的弦的中點(diǎn)P的軌跡方程;
(2)求斜率為2的平行弦的中點(diǎn)Q的軌跡方程;
(3)求過點(diǎn)M($\frac{1}{2}$,$\frac{1}{2}$)且被M平分的弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(2,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)-${\;}^{\frac{2}{3}}$+(1.5)-2+($\sqrt{2}$×$\root{4}{3}$)4
(2)若x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,試求$\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}+2}{{x}^{2}+{x}^{-2}+3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),其圖象是一條連續(xù)不斷的曲線,且$f(\frac{1}{2}+x)=f(\frac{1}{2}-x)$,則f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一直線的傾斜角的正弦值為$\frac{5}{13}$,則該直線的斜率為( 。
A.$\frac{5}{12}$B.±$\frac{5}{12}$C.$\frac{12}{5}$D.±$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\frac{1}{\sqrt{1-{e}^{x}}}$的定義域是(  )
A.(0,+∞)B.(-∞,0]C.(-∞,0)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.x,y∈R,A={(x,y)|x2+y2=1},B={(x,y)|$\frac{x}{a}$-$\frac{y}$=1,a>0,b>0},當(dāng)A∩B只有1個(gè)元素時(shí),a,b滿足的關(guān)系式為( 。
A.$\frac{1}{a}$+$\frac{1}$=1B.a2+b2=1C.$\frac{1}{a^2}$+$\frac{1}{b^2}$=1D.a+b=ab

查看答案和解析>>

同步練習(xí)冊(cè)答案