如圖,已知切⊙于點E,割線PBA交⊙于A、B兩點,∠APE的平分線和AE、BE分別交于點C、D.

求證:(Ⅰ);   (Ⅱ).

(Ⅰ)見解析;(Ⅱ)見解析.

解析試題分析:(Ⅰ)要證,需要證明,切⊙于點,平分 ,, 得證;
(Ⅱ)通過證明得到.
試題解析:(Ⅰ)證明:切⊙于點, 
平分 
,
 
(Ⅱ)證明: 
, 
同理, 
  
考點:1.幾何證明;2.三角形相似.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是圓O的直徑,D,E為圓上位于AB異側的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.

求證:∠E=∠C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是以為直徑的半圓上的一點,過的直線交直線,交過A點的切線于,.

(Ⅰ)求證:是圓的切線;
(Ⅱ)如果,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知圓⊙O1與圓⊙O2外切于點P,過點P的直線交圓⊙O1于A,交圓⊙O2于B,AC為圓⊙O1直徑,BD與⊙O2相切于B,交AC延長線于D.

(Ⅰ)求證:
(Ⅱ)若BC、PD相交于點M,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,自⊙外一點引切線與⊙切于點,的中點,過引割線交⊙兩點. 求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線為圓的切線,切點為,直徑,連接于點.

(Ⅰ)證明:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知⊙O是的外接圓,邊上的高,是⊙O的直徑.

(1)求證:;
(II)過點作⊙O的切線交的延長線于點,若,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線交圓兩點,是直徑,平分,交圓于點, 過.

(1)求證:是圓的切線;
(2)若,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線過圓心,交⊙,直線交⊙(不與重合),直線與⊙相切于,交,且與垂直,垂足為,連結.

求證:(1);      
(2).

查看答案和解析>>

同步練習冊答案