【題目】過拋物線焦點(diǎn)的直線與拋物線交于、兩點(diǎn),與圓交于、兩點(diǎn),若有三條直線滿足,則的取值范圍為______.
【答案】
【解析】
分直線軸和直線與軸不垂直兩種情況討論,在直線軸時(shí),求出、、、的坐標(biāo)進(jìn)行驗(yàn)證,在直線與軸不垂直時(shí),設(shè)直線的方程為,將直線的方程與拋物線的方程聯(lián)立,利用韋達(dá)定理可得出,從而可求出的取值范圍.
(1)當(dāng)直線軸時(shí),直線:與拋物線交于、,與圓交于,,滿足.
(2)當(dāng)直線不與軸垂直時(shí),設(shè)直線方程,設(shè)點(diǎn),,
聯(lián)立方程組,化簡得,
由韋達(dá)定理,
由拋物線的定義,過焦點(diǎn)的線段,
當(dāng)四點(diǎn)順序?yàn)?/span>、、、時(shí),
,的中點(diǎn)為焦點(diǎn),這樣的不與軸垂直的直線不存在;
當(dāng)四點(diǎn)順序?yàn)?/span>、、、時(shí),,,
又,,即,
當(dāng)時(shí)存在互為相反數(shù)的兩斜率和,即存在關(guān)于對稱的兩條直線.
綜上,當(dāng)時(shí)有三條滿足條件的直線.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心在軸的正半軸上,與軸相交于點(diǎn),且直線被圓截得的弦長為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓交于兩點(diǎn),那么以為直徑的圓能否經(jīng)過原點(diǎn),若能,請求出直線的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟(jì)覆蓋的范圍迅速擴(kuò)張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂”等形式開始在很多平臺(tái)上線.某創(chuàng)業(yè)者計(jì)劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農(nóng)家樂”跟蹤調(diào)查了天.得到的統(tǒng)計(jì)數(shù)據(jù)如下表,為收費(fèi)標(biāo)準(zhǔn)(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費(fèi)標(biāo)準(zhǔn)與“入住率”的散點(diǎn)圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農(nóng)家樂”中隨機(jī)抽取兩家深入調(diào)查,記為“入住率”超過的農(nóng)家樂的個(gè)數(shù),求的概率分布列;
(2)令,由散點(diǎn)圖判斷與哪個(gè)更合適于此模型(給出判斷即可,不必說明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(結(jié)果保留一位小數(shù))
(3)若一年按天計(jì)算,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),年銷售額最大?(年銷售額入住率收費(fèi)標(biāo)準(zhǔn))
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P到直線y=﹣4的距離比點(diǎn)P到點(diǎn)A(0,1)的距離多3.
(1)求點(diǎn)P的軌跡方程;
(2)經(jīng)過點(diǎn)Q(0,2)的動(dòng)直線l與點(diǎn)P的軌交于M,N兩點(diǎn),是否存在定點(diǎn)R使得∠MRQ=∠NRQ?若存在,求出點(diǎn)R的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.首屆中國國際進(jìn)口博覽會(huì)的某展館棚頂一角的鋼結(jié)構(gòu)可以抽象為空間圖形陽馬.如圖所示,在陽馬中,底面.
(1)若,斜梁與底面所成角為,求立柱的長(精確到);
(2)證明:四面體為鱉臑;
(3)若,,,為線段上一個(gè)動(dòng)點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在Y軸的非負(fù)半軸上,點(diǎn)是拋物線上的一點(diǎn).
(1)求拋物線C的標(biāo)準(zhǔn)方程
(2)若點(diǎn)P,Q在拋物線C上,且拋物線C在點(diǎn)P,Q處的切線交于點(diǎn)S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當(dāng)P,Q在C上運(yùn)動(dòng)時(shí),△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是平面內(nèi)互不平行的三個(gè)向量,,有下列命題:
①方程不可能有兩個(gè)不同的實(shí)數(shù)解;
②方程有實(shí)數(shù)解的充要條件是;
③方程有唯一的實(shí)數(shù)解;
④方程沒有實(shí)數(shù)解.
其中真命題有 .(寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點(diǎn),三棱錐的體積為
(1)求三棱錐的高;
(2)在線段AB上取一點(diǎn)D,當(dāng)D在什么位置時(shí),和的夾角大小為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:上一點(diǎn)到焦點(diǎn)的距離為4,動(dòng)直線交拋物線于坐標(biāo)原點(diǎn)O和點(diǎn)A,交拋物線的準(zhǔn)線于點(diǎn)B,若動(dòng)點(diǎn)P滿足,動(dòng)點(diǎn)P的軌跡C的方程為.
(1)求出拋物線的標(biāo)準(zhǔn)方程;
(2)求動(dòng)點(diǎn)P的軌跡方程;
(3)以下給出曲線C的四個(gè)方面的性質(zhì),請你選擇其中的三個(gè)方面進(jìn)行研究:①對稱性;②范圍;③漸近線;④時(shí),寫出由確定的函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com