已知函數(shù)f(x)=Asin(ωxφ),x∈R(其中A>0,ω>0,-φ),其部分圖象如圖所示,將f(x)的圖象縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的2倍,再向左平移1個(gè)單位得到g(x)的圖象,則函數(shù)g(x)的解析式為(  ).
A.g(x)=sin(x+1)B.g(x)=sin(x+1)
C.g(x)=sinD.g(x)=sin
B
由圖象得,A=1,=1-(-1)=2,T=8,因?yàn)?i>T==8,ω,由圖象可以看出,f(1)=1,所以φ,即f(x)=sin(x+1),將f(x)的圖象縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的2倍得到f1(x)=sin,再向右平移1個(gè)單位得到f2(x)=sin=sin(x+1),選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)請(qǐng)用“五點(diǎn)法”畫出函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖(先在所給的表格中填上所需的數(shù)值,再畫圖);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),求函數(shù)的最大值和最小值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的周期為.

(1)若,求它的振幅、初相;
(2)在給定的平面直角坐標(biāo)系中作出該函數(shù)在的圖像;
(3)當(dāng)時(shí),根據(jù)實(shí)數(shù)的不同取值,討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)的最小正周期為,有一條對(duì)稱軸為,試寫出一個(gè)滿足條件的函數(shù)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把函數(shù)y=2sin x,x∈R的圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),則所得函數(shù)圖象的解析式是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=Acos(ωxφ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ”的(  ).
A.充分不必要條件B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=sin +2cos2x-1(x∈R).
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為ab,c,已知函數(shù)f(x)的圖象經(jīng)過點(diǎn)b,ac成等差數(shù)列,且·=9,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)f(x)=2sin ωx(ω>0)在區(qū)間上單調(diào)遞增,則ω的最大值等于( ).
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)最小正周期為        .

查看答案和解析>>

同步練習(xí)冊(cè)答案