18.如圖,已知AB是半圓O的直徑,M,N,P是將半圓圓周四等分的三個(gè)分點(diǎn),從A,B,M,N,P這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),則這3個(gè)點(diǎn)組成直角三角形的概率為( 。
A.$\frac{2}{5}$B.$\frac{7}{20}$C.$\frac{3}{10}$D.$\frac{1}{4}$

分析 這是一個(gè)古典概型問題,我們可以列出從A、B、M、N、P這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),可能組成的所有三角形的個(gè)數(shù),然后列出其中是直角三角形的個(gè)數(shù),代入古典概型公式即可求出答案.

解答 解:從A、B、M、N、P這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),一共可以組成10個(gè)三角形:ABM、ABN、ABP、AMN、AMP、ANP、BMN、BMP、BNP、MNP,其中是直角三角形的只有ABM、ABN、ABP,3個(gè),所以這3個(gè)點(diǎn)組成直角三角形的概率P=$\frac{3}{10}$,
故選:C.

點(diǎn)評(píng) 本題考查古典概型的概率問題,掌握古典概型的計(jì)算步驟和計(jì)算公式是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)在[0,+∞)上有連續(xù)導(dǎo)數(shù),且f′(x)≥k>0,f(0)<0.證明f(x)在(0,+∞)內(nèi)有且僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知全集U=R,集合A={x|-1≤x≤3},B={x|x<2},則A∩B=[-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.高安二中高中年級(jí)早上7點(diǎn)早讀,假設(shè)該校學(xué)生小x與小y在早上6:30-6:50之間到校且每人在該時(shí)間段的任何時(shí)間到校是等可能的,則小x比小y至少早5分鐘到校的概率為$\frac{9}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,△ABC是邊長(zhǎng)為1正三角形,CD=DA=$\frac{{\sqrt{3}}}{3}$,AC與BD的交點(diǎn)為M,點(diǎn)N在線段PB上,且PN=$\frac{1}{2}$.若二面角A-BC-P的正切值為2$\sqrt{2}$.
(I)求證:MN∥平面PDC;
(Ⅱ)求平面DCP與平面ABP所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求適合下列條件的直線的方程:
(1)經(jīng)過點(diǎn)A(-1,-3),傾斜角等于直線y=3x的傾斜角的2倍;
(2)經(jīng)過點(diǎn)P(3,2),且在兩坐標(biāo)軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.有一個(gè)棱長(zhǎng)為1的正方體,對(duì)稱中心在原點(diǎn)且每一個(gè)面都平行于坐標(biāo)平面,給出以下各點(diǎn):A(1,0,1),B(-1,0,1),C($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{5}$),D($\frac{1}{5}$,$\frac{1}{2}$,$\frac{1}{2}$),E($\frac{2}{5}$,-$\frac{1}{2}$,0),F(xiàn)(1,$\frac{1}{2}$,$\frac{1}{3}$),則位于正方體之外的點(diǎn)是A,B,F(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某商店銷售一種商品,售價(jià)比進(jìn)價(jià)高20%以上才能出售,為了獲得更多利潤(rùn),店方以高出進(jìn)價(jià)80%的價(jià)格標(biāo)價(jià),若你想買下標(biāo)價(jià)為360元的這種商品,最多降價(jià)多少元,商店才能出售?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.滿足x3=ex的x的個(gè)數(shù)為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案