【題目】已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩UB=(
A.{x|0<x<1}
B.{x|x<0}
C.{x|x>2}
D.{x|1<x<2}

【答案】A
【解析】解:由A中的不等式變形得:x(x﹣2)<0,
解得:0<x<2,即A={x|0<x<2},
由B中的不等式解得:x≥1,即B={x|x≥1},
∵全集U=R,
UB={x|x<1},
則A∩(UB)={x|0<x<1}.
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí),掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,集合A={x|x>1},集合B={x|x>p},若(UA)∩B=,則p應(yīng)該滿(mǎn)足的條件是(
A.p>1
B.p≥1
C.p<1
D.p≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別為F1 , F2 , 在左支上過(guò)F1的弦AB的長(zhǎng)為5,若實(shí)軸長(zhǎng)度為8,則△ABF2的周長(zhǎng)是(
A.26
B.21
C.18
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列1,3,7,15,…的通項(xiàng)公式an等于(
A.2n
B.2n+1
C.2n﹣1
D.2n1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)=ax2+ax﹣1在R上滿(mǎn)足f(x)<0恒成立,則a的取值范圍是(
A.a≤0
B.a<﹣4
C.﹣4<a<0
D.﹣4<a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b∈R,則“0≤a≤1且0≤b≤1”是“0≤ab≤1”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義集合A﹣B={x|x∈A且xB},若集合M={1,2,3,4,5},集合N={x|x=2k﹣1,k∈Z},則集合M﹣N的子集個(gè)數(shù)為(
A.2
B.3
C.4
D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m、n是兩條不同直線(xiàn),α、β、γ是三個(gè)不同平面,以下有三種說(shuō)法:
①若α∥β,β∥γ,則γ∥α; ②若α⊥γ,β∥γ,則α⊥β;
③若m⊥β,m⊥n,nβ,則n∥β.
其中正確命題的個(gè)數(shù)是(
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n表示兩條不同直線(xiàn),α表示平面,下列說(shuō)法正確的是(  )
A.若m∥α,n∥α,則m∥n
B.若m⊥α,m⊥n,則n∥α
C.若m⊥α,nα,則m⊥n
D.若m∥α,m⊥n,則n⊥α

查看答案和解析>>

同步練習(xí)冊(cè)答案