【題目】ABC中,角A,BC所對的邊分別為a,b,c,已知

(1)求角B的大。

(2)若a+c=1,求b的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析; 1)已知等式利用正弦定理,整理后根據(jù) 不為0求出 的值,由 為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
2)由余弦定理列出關(guān)系式,變形后將 的值代入表示出 ,根據(jù)的范圍,利用二次函數(shù)的性質(zhì)求出的范圍,即可求出 的范圍.

試題解析:(1)由已知得: , 由正弦定理,得

∵sinA≠0,則 , 即 ,又B∈(0,π),

則B=.

(2)∵a+c=1,即c=1﹣a,cosB=,∴由余弦定理得:b2=a2+c2﹣2accosB,即

b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)

=3(a﹣2+,由0<a<1,得≤b2<1,∴≤b<1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn , 且 (n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,數(shù)列{bn}的前n項(xiàng)和為Tn , 證明:T2n1>1>T2n(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大。
(2)若sinB+sinC=1,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓+=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,一條直線經(jīng)過點(diǎn)F1與橢圓交于A,B兩點(diǎn).

(1)求△ABF2的周長;

(2)若的傾斜角為,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x不等式x2﹣2mx+m+2<0m∈R)的解集為M

(1)當(dāng)M為空集時,求m的取值范圍;

(2)在(1)的條件下,求的最大值;

3當(dāng)M不為空集M [1,4]時,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域均為,且是奇函數(shù),是偶函數(shù),,其中為自然對數(shù)的底數(shù).

(1)求的解析式,并證明:當(dāng)時,

(2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出是否線性相關(guān);

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程 ;

(3)已知該廠技術(shù)改造前噸甲產(chǎn)品能耗為噸標(biāo)準(zhǔn)煤,試根據(jù)求出的線性回歸方程,預(yù)測生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式 ,, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個幾何體的三視圖如圖所示.

1)求此幾何體的表面積;

2)如果點(diǎn)在正視圖中所示位置:為所在線段中點(diǎn),為頂點(diǎn),求在幾何體表面上,從點(diǎn)到點(diǎn)的最短路徑的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為,動點(diǎn)、在棱上,動點(diǎn),分別在棱,上,若,,,,大于零),則四面體的體積( ).

A. ,,都有關(guān) B. 有關(guān),與,無關(guān)

C. 有關(guān),與無關(guān) D. 有關(guān),與無關(guān)

查看答案和解析>>

同步練習(xí)冊答案