如圖所示,二面角α-CD-β的大小為θ,點(diǎn)A在平面α內(nèi),△ACD的面積為s,且CD=m,過A點(diǎn)的直線交平面β于B,AB⊥CD,且AB與平面β所成的角為30°,則當(dāng)θ=    時(shí),△BCD的面積取得最大值為   
【答案】分析:當(dāng)BA⊥α于A時(shí),△BCD的面積取得最大值.過A作AO⊥CD,連接BO,由AB⊥CD,知∠AOB是二面角α-CD-β的平面角,由AB與平面β所成的角為30°,知θ=∠AOB=60°.設(shè)△BCD的面積為S‘,由cos60°=,能求出△BCD的面積.
解答:解:點(diǎn)A在平面α內(nèi),過A點(diǎn)的直線交平面β于B,
當(dāng)BA⊥α于A時(shí),△BCD的面積取得最大值.
過A作AO⊥CD,連接BO,
∵AB⊥CD,
∴∠AOB是二面角α-CD-β的平面角,
∵AB與平面β所成的角為30°,
∴θ=∠AOB=60°.
設(shè)△BCD的面積為S‘,
∵θ=∠AOB=60°,
∴cos60°=,
∴S′=2S.
故答案為:60°,2S.
點(diǎn)評(píng):本題考查如何用面積法求二面角的大小,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地化空間問題為平面問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)ABCD是正方形,邊長(zhǎng)為7 cm,MN∥AB且交BC于點(diǎn)M,交DA于點(diǎn)N,若AN=3 cm,沿MN把正方形折成如圖所示的二面角A-MN-D,大小為60°,求圖中異面直線MN與BD間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,二面角α-CD-β的大小為θ,點(diǎn)A在平面α內(nèi),△ACD的面積為s,且CD=m,過A點(diǎn)的直線交平面β于B,AB⊥CD,且AB與平面β所成的角為30°,則當(dāng)θ=
60°
60°
時(shí),△BCD的面積取得最大值為
2S
2S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形、分別是的中點(diǎn),將△沿折起,如圖所示,記二面角的大小為.

(I) 證明//平面;

(II)若△為正三角形,試判斷點(diǎn)在平面內(nèi)的射影是否在直線上,證明你的結(jié)論,并求角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD,E、F分別是邊AB、CD的中點(diǎn),將△ADE沿DE折起,如圖所示.記二面角ADEC的大小為θ(0<θ<π).

(1)證明BF∥平面ADE;

(2)若△ACD為正三角形,試判斷點(diǎn)A在平面BCDE內(nèi)的射影G是否在直線EF上,證明你的結(jié)論,并求角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD,E,F分別是AB,CD的中點(diǎn),將△ADE沿DE折起,如圖所示.記二面角ADEC的大小為θ(0<θ<π).

(1)證明BF∥平面ADE;

(2)若△ACD為正三角形,試判斷點(diǎn)A在平面BCDE內(nèi)的射影G是否在直線EF上,證明你的結(jié)論,并求角θ的余弦值

                    

查看答案和解析>>

同步練習(xí)冊(cè)答案