【題目】如圖,在正四棱錐中,,.

1)求證:平面

2)求二面角的余弦值.

【答案】1)證明見(jiàn)解析.(2

【解析】

1為正四棱錐.所以為正方形,.

因?yàn)?/span>為正方形,所以 . ,所以.

2)要求二面角的余弦值,通過(guò)建立空間直角坐標(biāo)系,運(yùn)用向量法即可得出答案.

1)證明:聯(lián)結(jié).

在正四棱錐中,底面.

因?yàn)?/span>平面,所以.

在正方形中,,

又因?yàn)?/span>,所以.

2)解:由(1)知,,,兩兩垂直,

為坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系.

在正方形中,因?yàn)?/span>,

所以.

又因?yàn)?/span>

所以.

所以點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

點(diǎn)的坐標(biāo)為.

,.

由(1)知,平面.

所以平面的一個(gè)法向量為. 設(shè)平面的一個(gè)法向量.

,即

,則,.

故平面的一個(gè)法向量.

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E

(1)求證:四邊形ACC1A1為矩形;

(2)求二面角E-B1C-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省級(jí)示范高中高三年級(jí)對(duì)各科考試的評(píng)價(jià)指標(biāo)中,有“難度系數(shù)“和“區(qū)分度“兩個(gè)指標(biāo)中,難度系數(shù),區(qū)分度.

1)某次數(shù)學(xué)考試(滿(mǎn)分為150分),隨機(jī)從實(shí)驗(yàn)班和普通班各抽取三人,實(shí)驗(yàn)班三人的成績(jī)分別為147,142,137;普通班三人的成績(jī)分別為97,102,113.通過(guò)樣本估計(jì)本次考試的區(qū)分度(精確0.01).

2)如表表格是該校高三年級(jí)6次數(shù)學(xué)考試的統(tǒng)計(jì)數(shù)據(jù):

難度系數(shù)x

0.64

0.71

0.74

0.76

0.77

0.82

區(qū)分度y

0.18

0.23

0.24

0.24

0.22

0.15

①計(jì)算相關(guān)系數(shù)r,|r|<0.75時(shí),認(rèn)為相關(guān)性弱;|r|≥0.75時(shí),認(rèn)為相關(guān)性強(qiáng).通過(guò)計(jì)算說(shuō)明,能否利用線(xiàn)性回歸模型描述yx的關(guān)系(精確到0.01).

ti=|xi0.74|(i=1,2,…,6),求出y關(guān)于t的線(xiàn)性回歸方程,并預(yù)測(cè)x=0.75時(shí)y的值(精確到0.01).

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù)r,回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),線(xiàn)段的中點(diǎn)的橫坐標(biāo)為.

1)求拋物線(xiàn)的方程;

2)已知點(diǎn),過(guò)點(diǎn)作直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),求的最大值,并求取得最大值時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線(xiàn)的準(zhǔn)線(xiàn)上一點(diǎn),F為拋物線(xiàn)的焦點(diǎn),P為拋物線(xiàn)上的點(diǎn),且,若雙曲線(xiàn)C中心在原點(diǎn),F是它的一個(gè)焦點(diǎn),且過(guò)P點(diǎn),當(dāng)m取最小值時(shí),雙曲線(xiàn)C的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶節(jié)期間,滕州市實(shí)驗(yàn)小學(xué)舉行了一次科普知識(shí)競(jìng)賽活動(dòng),設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)及紀(jì)念獎(jiǎng),獲獎(jiǎng)人數(shù)的分配情況如圖所示,各個(gè)獎(jiǎng)品的單價(jià)分別為:一等獎(jiǎng)50元、二等獎(jiǎng)20元、三等獎(jiǎng)10元,四等獎(jiǎng)5元,紀(jì)念獎(jiǎng)2元,則以下說(shuō)法中不正確的是(

A.獲紀(jì)念獎(jiǎng)的人數(shù)最多B.各個(gè)獎(jiǎng)項(xiàng)中二等獎(jiǎng)的總費(fèi)用最高

C.購(gòu)買(mǎi)獎(jiǎng)品的費(fèi)用平均數(shù)為6.65D.購(gòu)買(mǎi)獎(jiǎng)品的費(fèi)用中位數(shù)為5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市組織高三全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為110分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績(jī),得到樣本數(shù)據(jù)如下:

B校樣本數(shù)據(jù)統(tǒng)計(jì)表:

成績(jī)(分)

1

2

3

4

5

6

7

8

9

10

人數(shù)(個(gè))

0

0

0

9

12

21

9

6

3

0

1)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.

2)從A校樣本數(shù)據(jù)成績(jī)分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級(jí)的比賽,求這2人成績(jī)之和大于或等于15的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=|x-m|-|2x+2m|m0).

(Ⅰ)當(dāng)m=1時(shí),求不等式fx)≥1的解集;

(Ⅱ)若xR,tR,使得fx+|t-1||t+1|,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)上的單調(diào)性;

(2)設(shè),當(dāng)時(shí),證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案