精英家教網 > 高中數學 > 題目詳情

【題目】曲線的參數方程為 (為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)寫出的直角坐標方程,并且用 (為直線的傾斜角, 為參數)的形式寫出直線的一個參數方程;

(2) 是否相交,若相交求出兩交點的距離,若不相交,請說明理由.

【答案】(1)的直角坐標方程為,直線的一個參數方程為 (為參數);(2)相交,且兩交點的距離為

【解析】試題分析:

(1)由題意可得的直角坐標方程為,直線的一個參數方程為 (為參數);

(2)聯(lián)立直線與橢圓的方程,很明顯直線與橢圓有兩個交點,且兩交點的距離是

試題解析:

(1) 的直角坐標方程為,

,直線的傾斜角為

過點,故直線的一個參數方程為 (為參數)

(2)將的參數方程代入的直角坐標方程得

, ,

顯然有兩個交點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,x∈[2,4].
(1)判斷f(x)的單調性,并利用單調性的定義證明:
(2)求f(x)在[2,4]上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設橢圓 的離心率為 分別為橢圓的左、右頂點, 為右焦點,直線的交點到軸的距離為,過點軸的垂線, 上異于點的一點,以為直徑作圓.

(1)求的方程;

(2)若直線的另一個交點為,證明:直線與圓相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}的前n項和為Sn=2an﹣2,數列{bn}是首項為a1 , 公差不為零的等差數列,且b1 , b3 , b11成等比數列.
(1)求數列{an}與{bn}的通項公式;
(2)設數列{cn}滿足cn= ,前n項和為Pn , 對于n∈N*不等式 Pn<t恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐中,PA⊥平面ABCD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b.

(1)求證:平面PBD⊥平面PAC;
(2)設AC與BD交于點O,M為OC中點,若二面角O﹣PM﹣D的正切值為2 ,求a:b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=
(1)判斷函數f(x)的奇偶性并證明;
(2)證明f(x)是定義域內的增函數;
(3)解不等式f(1﹣m)+f(1﹣m2)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)計算f(1)+f(0)的值;
(2)計算f(x)+f(1﹣x)的值;
(3)若關于x的不等式:f[23x﹣2x+m(2x﹣2x)+ ]< 在區(qū)間[1,2]上有解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,在其定義域內既是奇函數又是增函數的是(
A.y=
B.y=x2
C.y=x3
D.y=sinx

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy 中,橢圓G的中心為坐標原點,左焦點為F1(﹣1,0),離心率e=

(1)求橢圓G 的標準方程;

(2)已知直線l1:y=kx+m1與橢圓G交于 A,B兩點,直線l2:y=kx+m2(m1≠m2)與橢圓G交于C,D兩點,且|AB|=|CD|,如圖所示.

①證明:m1+m2=0;

②求四邊形ABCD 的面積S 的最大值.

查看答案和解析>>

同步練習冊答案