14.如圖,在四棱錐P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(Ⅰ)證明:平面POC⊥平面PAD;
(Ⅱ)若AD=2,PA=PD,求CD與平面PAB所成角的余弦值.

分析 (Ⅰ)證明:OC⊥平面PAD,即可證明平面POC⊥平面PAD;
(Ⅱ)若AD=2,PA=PD,點(diǎn)O作OE⊥PA于E,連結(jié)BE,則OE⊥平面PAB,∠OBE為CD與平面PAB所成的角,即可求CD與平面PAB所成角的余弦值.

解答 (Ⅰ)證明:在四邊形OABC中,
∵AO∥BC,AO=BC,AB⊥AD,
∴四邊形OABC是正方形,得OC⊥AD,-----------------------(2分)
在△POC中,∵PO2+OC2=PC2,∴OC⊥PO,-------(4分)
又PO∩AD=O,∴OC⊥平面PAD,
又OC?平面POC,∴平面POC⊥平面PAD;-------------(6分)
(Ⅱ)解:連結(jié)OB,
∵OD∥BC,且OD=BC∴BCDO為平行四邊形,∴OB∥CD,----------------------------(7分)
由(Ⅰ)知OC⊥平面PAD,∴AB⊥平面PAD,
∵AB?平面PAB,∴平面PAB⊥平面PAD,----------------------------------------------------(8分)
過點(diǎn)O作OE⊥PA于E,連結(jié)BE,則OE⊥平面PAB,
∴∠OBE為CD與平面PAB所成的角,----------------------(10分)
在Rt△OEB中,∵$OE=\frac{PO•AO}{PA}=\frac{{\sqrt{2}}}{{\sqrt{3}}}$,$OB=\sqrt{2}$,
∴$cos∠OBE=\frac{BE}{OB}=\frac{{\sqrt{2-\frac{6}{9}}}}{{\sqrt{2}}}=\frac{{\sqrt{6}}}{3}$,
即CD與平面PAB所成角的余弦值為$\frac{{\sqrt{6}}}{3}$.--------------------------------------------------(12分)

點(diǎn)評(píng) 本題考查線面、面垂直的證明,考查線面角,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{AB}$=(1,1),$\overrightarrow{BC}$=(x,-3),若$\overrightarrow{AC}$⊥$\overrightarrow{AB}$,則x=( 。
A.3B.1C.-3或2D.-4或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若集合M滿足:?x,y∈M,都有x+y∈M,xy∈M,則稱集合M是封閉的.顯然,整數(shù)集Z,有理數(shù)集Q都是封閉的.對(duì)于封閉的集合M(M⊆R),f:M→M是從集合到集合的一個(gè)函數(shù),
①如果都有f(x+y)=f(x)+f(y),就稱是保加法的;
②如果?x,y∈M都有f(xy)=f(x)•f(y),就稱f是保乘法的;
③如果f既是保加法的,又是保乘法的,就稱f在M上是保運(yùn)算的.
在上述定義下,集合$\left\{{\sqrt{3}m+n\left|{m,n∈Q}\right.}\right\}$是封閉的(填“是”或“否”);若函數(shù)f(x)在Q上保運(yùn)算,并且是不恒為零的函數(shù),請(qǐng)寫出滿足條件的一個(gè)函數(shù)f(x)=f(x)=x,x∈Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=sin2x+2cos2x-1.
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線l:x+4y=2與圓C:x2+y2=1交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若直線OA、OB的傾斜角分別為α、β,則cosα+cosβ=( 。
A.$\frac{18}{17}$B.$-\frac{12}{17}$C.$-\frac{4}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.對(duì)于任意的非零實(shí)數(shù)m,直線y=2x+m與雙曲線$\frac{x^2}{a^2}-\frac{{{y^2}_{\;}}}{b^2}=1({a>0,b>0})$有且只有一個(gè)交點(diǎn),則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱.從外表上看,六根等長(zhǎng)的正四棱柱體分成三組,經(jīng)90°榫卯起來,如圖3,若正四棱柱體的高為6,底面正方形的邊長(zhǎng)為1,現(xiàn)將該魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器的表面積的最小值為41π.(容器壁的厚度忽略不計(jì))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在焦距為2c的橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則“b<c”是“橢圓M上至少存在一點(diǎn)P,使得PF1⊥PF2”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.誠信是立身之本,道德之基.某校學(xué)生會(huì)創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進(jìn)誠信教育,并用“
$\frac{周實(shí)際回收水費(fèi)}{周投入成本}$”表示每周“水站誠信度”.為了便于數(shù)據(jù)分析,以四周為一個(gè)周期,下表為該水站連續(xù)八周(共兩個(gè)周期)的誠信度數(shù)據(jù)統(tǒng)計(jì),如表1:
第一周第二周第三周第四周
第一個(gè)周期95%98%92%88%
第二個(gè)周期94%94%83%80%
(Ⅰ)計(jì)算表1中八周水站誠信度的平均數(shù)$\overline{x}$
(Ⅱ)從表1誠信度超過91% 的數(shù)據(jù)中,隨機(jī)抽取2個(gè),求至少有1個(gè)數(shù)據(jù)出現(xiàn)在第二個(gè)周期的概率;
(Ⅲ)學(xué)生會(huì)認(rèn)為水站誠信度在第二個(gè)周期中的后兩周出現(xiàn)了滑落,為此學(xué)生會(huì)舉行了“以誠信為本”主題教育活動(dòng),并得到活動(dòng)之后一個(gè)周期的水站誠信度數(shù)據(jù),如表2:
第一周第二周第三周第四周
第三個(gè)周期85%92%95%96%
請(qǐng)根據(jù)提供的數(shù)據(jù),判斷該主題教育活動(dòng)是否有效,并根據(jù)已有數(shù)據(jù)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案