【題目】已知四棱錐,四邊形是正方形,

(1)證明:平面平面;

(2)若的中點,求二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1可得,即為正方形,可得,從而得平面由面面垂直的判定定理可得平面平面;(2設(shè)的中點為,,,面面垂直的性質(zhì)可得平面,在平面內(nèi),過作直線,則兩兩垂直,為坐標原點, 所在直線為軸, 軸, 軸,建立空間直角坐標系,分別根據(jù)向量垂直數(shù)量積為零列方程組求出平面與平面的一個法向量,根據(jù)空間向量夾角余弦公式,可得結(jié)果.

試題解析(1)∵,

,即,

又∵為正方形,∴,

,

平面,∵平面,∴平面平面

(2)

設(shè)的中點為,∵,∴,

由(1)可知平面平面,且平面平面

平面,

在平面內(nèi),過作直線,則兩兩垂直.

為坐標原點, 所在直線為軸, 軸, 軸,建立空間直角坐標系,

,

設(shè)平面的法向量為,

, ,即,取

設(shè)平面的法向量為,

, ,即,取,

,由圖可知,二面角的余弦值為

【方法點晴】本題主要考查面面垂直的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應(yīng)點的坐標,求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 .

1)已知直線與雙曲線交于不同的兩點,求實數(shù)的值;

(2)過點作直線與雙曲線交于不同的兩點若弦恰被點平分,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#

(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表從1,2,3,4,5中各隨機選一個數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先?浚蝗魞蓴(shù)之和為奇數(shù),則乙先?,這種規(guī)則是否公平?請說明理由.

(2)根據(jù)以往經(jīng)驗,甲船將于早上7:00~8:00到達,乙船將于早上7:30~8:30到達,請求出甲船先?康母怕

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分圖象如圖所示.

(1)求f(x)的解析式,并求函數(shù)f(x)在[﹣ ]上的值域;
(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩俱樂部舉行乒乓球團體對抗賽.雙方約定:
①比賽采取五場三勝制(先贏三場的隊伍獲得勝利.比賽結(jié)束)
②雙方各派出三名隊員.前三場每位隊員各比賽﹣場
已知甲俱樂部派出隊員A1、A2 . A3 , 其中A3只參加第三場比賽.另外兩名隊員A1、A2比賽場次未定:乙俱樂部派出隊員B1、B2 . B3 , 其中B1參加第一場與第五場比賽.B2參加第二場與第四場比賽.B3只參加第三場比賽
根據(jù)以往的比賽情況.甲俱樂部三名隊員對陣乙俱樂部三名隊員獲勝的概率如表:

A1

A2

A3

B1

B2

B3


(1)若甲俱樂部計劃以3:0取勝.則應(yīng)如何安排A1、A2兩名隊員的出場順序.使得取勝的概率最大?
(2)若A1參加第一場與第四場比賽,A2參加第二場與第五場比賽,各隊員每場比賽的結(jié)果互不影響,設(shè)本次團體對抗賽比賽的場數(shù)為隨機變量X,求X的分布列及數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知所在的平面, 的直徑, 上一點,且中點, 中點.

(1)求證: ;

(2)求證: ;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,空間四邊形ABCD的對棱AD、BC成600的角,且AD=BC=a,平行于AD與BC的截面分別交AB、AC、CD、BD于E、F、G、H.

(1)求證:四邊形EFGH為平行四邊形;

(2)E在AB的何處時截面EFGH的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品在近30天內(nèi)每件的銷售價格P元和時間t(t∈N)的關(guān)系如圖所示.

(1)請確定銷售價格P(元)和時間t(天)的函數(shù)解析式;

(2)該商品的日銷售量Q(件)與時間t(天)的關(guān)系是:Q=﹣t+40(0≤t≤30,t∈N),求該商品的日銷售金額y(元)與時間t(天)的函數(shù)解析式;

(3)求該商品的日銷售金額y(元)的最大值,并指出日銷售金額最大的一天是30天中的哪一天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

時,試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;

若不等式上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案