【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

【答案】(1)(2)均見解析.

【解析】試題分析:(1)連結(jié)AC,交BDO,連結(jié)OEEPA的中點(diǎn),利用三角形中位線的性質(zhì),可知OE∥PC,利用線面平行的判定定理,即可得出結(jié)論;

2)先證明PA⊥DE,再證明PA⊥OE,可得PA⊥平面BDE,從而可得平面BDE⊥平面PAB

證明:(1)連結(jié)AC,交BDO,連結(jié)OE

因為ABCD是平行四邊形,所以OA=OC2分)

因為E為側(cè)棱PA的中點(diǎn),所以OE∥PC4分)

因為PC平面BDEOE平面BDE,所以PC∥平面BDE6分)

2)因為EPA中點(diǎn),PD=AD,所以PA⊥DE8分)

因為PC⊥PA,OE∥PC,所以PA⊥OE

因為OE平面BDE,DE平面BDE,OE∩DE=E,

所以PA⊥平面BDE12分)

因為PA平面PAB,所以平面BDE⊥平面PAB14分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以橢圓的四個頂點(diǎn)為頂點(diǎn)的四邊形的四條邊與共有個交點(diǎn),且這個交點(diǎn)恰好把圓周六等分.

(1)求橢圓的方程;

(2)若直線相切,且橢圓相交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時(萬元),通過市場分析,若每件售價為500元時,該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.

求證:(1)DE∥平面AA1C1C;

(2)BC1⊥平面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測評成績(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對他前7次考試的數(shù)學(xué)成績x(滿分150分),物理成績y進(jìn)行分析,下面是該生7次考試的成績。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的數(shù)學(xué)成績達(dá)到130分,請你估計他的物理成績大約是多少?

附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

(1)判斷圓與圓的位置關(guān)系,并說明理由;

(2)若過點(diǎn)的直線 與圓相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,且acsin C=(a2c2b2)·sin B

(1)若C,求A的大小;

(2)若ab,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在直角梯形,,的中點(diǎn)的交點(diǎn).將沿折起到△的位置,如圖2所示.

1證明:平面

2若平面平面,求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)L為曲線Cy在點(diǎn)(1,0)處的切線.

(1)L的方程;

(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.

查看答案和解析>>

同步練習(xí)冊答案