【題目】已知橢圓:,過(guò)上一動(dòng)點(diǎn)作軸,垂足為點(diǎn).當(dāng)點(diǎn)滿(mǎn)足時(shí),點(diǎn)的軌跡恰是一個(gè)圓.
(1)求橢圓的離心率;
(2)若與曲線切于點(diǎn)的直線與橢圓交于,兩點(diǎn),且當(dāng)軸時(shí),,求的最大面積.
【答案】(1);(2).
【解析】分析:(1)先求點(diǎn)N的軌跡方程得到,再求橢圓的離心率.(2)先轉(zhuǎn)化為求|AB|的最大值,再求,再求|AB|的最大值和面積的最大值.
詳解:(1)設(shè),,由軸知,
∵,∴
又∵點(diǎn)在橢圓上,∴,即,
又點(diǎn)的軌跡恰是一個(gè)圓,那么,
,
∵,∴.
(2)由(1)知橢圓:,圓:.
當(dāng)軸時(shí),切點(diǎn)為與軸的交點(diǎn),即,
此時(shí),,即,
故:,:.
設(shè)直線:(斜率顯然存在),,,
由直線與相切知,,即,
聯(lián)立直線與橢圓的方程
得,
其中,
有那么,
令(),則,
又函數(shù)在上單調(diào)遞增,則,故,
∴,即的最大面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某海濱浴場(chǎng)一天的海浪高度是時(shí)間的函數(shù),記作,下表是某天各時(shí)的浪高數(shù)據(jù):
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)選用一個(gè)三角函數(shù)來(lái)近似描述這個(gè)海濱浴場(chǎng)的海浪高度與時(shí)間的函數(shù)關(guān)系;
(2)依據(jù)規(guī)定,當(dāng)海浪高度不少于時(shí)才對(duì)沖浪愛(ài)好者開(kāi)放海濱浴場(chǎng),請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的至之間,有多少時(shí)間可供沖浪愛(ài)好者進(jìn)行沖浪?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知線C的極坐標(biāo)方程為:ρ=2sin(θ+),過(guò)P(0,1)的直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C交于M,N兩點(diǎn).
(1)求出直線l與曲線C的直角坐標(biāo)方程.
(2)求|PM|2+|PN|2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)不變,再向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則下列說(shuō)法正確的是( )
A. 函數(shù)的一條對(duì)稱(chēng)軸是
B. 函數(shù)的一個(gè)對(duì)稱(chēng)中心是
C. 函數(shù)的一條對(duì)稱(chēng)軸是
D. 函數(shù)的一個(gè)對(duì)稱(chēng)中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程](10分)
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為,若以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.
(1)求圓C的一個(gè)參數(shù)方程;
(2)在平面直角坐標(biāo)系中,是圓C上的動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示, 是邊長(zhǎng)為3的正方形, 平面與平面所成角為.
(Ⅰ)求證: 平面;
(Ⅱ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是一幅統(tǒng)計(jì)圖,根據(jù)此圖得到的以下說(shuō)法中正確的是( )
A.這幾年生活水平逐年得到提高
B.生活費(fèi)收入指數(shù)增長(zhǎng)最快的一年是2015年
C.生活價(jià)格指數(shù)上漲速度最快的一年是2016年
D.雖然2017年的生活費(fèi)收入增長(zhǎng)緩慢,但生活價(jià)格指數(shù)略有降低,因而生活水平有較大的改善
E.2016年生活價(jià)格指數(shù)上漲的速度與2017年生活價(jià)格指數(shù)下降的速度相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬奧會(huì),推廣滑雪運(yùn)動(dòng),某滑雪場(chǎng)開(kāi)展滑雪促銷(xiāo)活動(dòng).該滑雪場(chǎng)的收費(fèi)標(biāo)準(zhǔn)是:滑雪時(shí)間不超過(guò)1小時(shí)免費(fèi),超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為40元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立地來(lái)該滑雪場(chǎng)運(yùn)動(dòng),設(shè)甲、乙不超過(guò)1小時(shí)離開(kāi)的概率分別為,;1小時(shí)以上且不超過(guò)2小時(shí)離開(kāi)的概率分別為,;兩人滑雪時(shí)間都不會(huì)超過(guò)3小時(shí).
(1)求甲、乙兩人所付滑雪費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的滑雪費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列與數(shù)學(xué)期望E(ξ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com