求以橢圓的兩頂點(diǎn)為焦點(diǎn),以橢圓的焦點(diǎn)為頂點(diǎn)的雙曲線方程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題16分)已知橢圓C1:上的點(diǎn)滿足到兩焦點(diǎn)的距離之和為4,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn)。
(1) 求雙曲線C2的方程;
(2) 若以橢圓的右頂點(diǎn)為圓心,該橢圓的焦距為半徑作一個(gè)圓,一條過點(diǎn)P(1,1)直線與該圓相交,交點(diǎn)為A、B,求弦AB最小時(shí)直線AB的方程,求求此時(shí)弦AB的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題16分)已知橢圓C1:上的點(diǎn)滿足到兩焦點(diǎn)的距離之和為4,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn)。
(1) 求雙曲線C2的方程;
(2) 若以橢圓的右頂點(diǎn)為圓心,該橢圓的焦距為半徑作一個(gè)圓,一條過點(diǎn)P(1,1)直線與該圓相交,交點(diǎn)為A、B,求弦AB最小時(shí)直線AB的方程,求求此時(shí)弦AB的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com