【題目】已知是函數(shù)的兩個(gè)零點(diǎn),

1求實(shí)數(shù)的值;

2設(shè)

①若不等式上恒成立,求實(shí)數(shù)的取值范圍;

②若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

【答案】(1);(2);(3)

【解析】試題分析:(1代入函數(shù)關(guān)系式,解方程可得實(shí)數(shù)的值;2①恒成立問題一般利用參變分離法轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,再根據(jù)二次函數(shù)最值求法求得對(duì)應(yīng)函數(shù)最小值,即得實(shí)數(shù)的取值范圍;②化簡(jiǎn)不等式,通過換元可得關(guān)于一元二次不等式,結(jié)合二次函數(shù)圖像確定滿足三個(gè)解的條件,最后根據(jù)實(shí)根分布列不等式組,解不等式可得實(shí)數(shù)的取值范圍.

試題解析:(1),由已知,

(2)由已知可得,

所以上恒成立可化為,

化為,令,則,

,故,

,因?yàn)?/span>,故

所以的取值范圍是

原方程可化為,

有兩個(gè)不等實(shí)根

兩不等式組解集分別為

的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程,給出下列四個(gè)判斷:

①存在實(shí)數(shù),使得方程恰有4個(gè)不同的實(shí)根;

②存在實(shí)數(shù),使得方程恰有5個(gè)不同的實(shí)根;

③存在實(shí)數(shù),使得方程恰有6個(gè)不同的實(shí)根;

④存在實(shí)數(shù),使得方程恰有8個(gè)不同的實(shí)根;

其中正確的為________(寫出所有判斷正確的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資人欲將5百萬元獎(jiǎng)金投入甲、乙兩種理財(cái)產(chǎn)品,根據(jù)銀行預(yù)測(cè),甲、乙兩種理財(cái)產(chǎn)品的收益與投入獎(jiǎng)金的關(guān)系式分別為,其中為常數(shù)且.設(shè)對(duì)乙種產(chǎn)品投入獎(jiǎng)金百萬元,其中

1)當(dāng)時(shí),如何進(jìn)行投資才能使得總收益最大;(總收益

2)銀行為了吸儲(chǔ),考慮到投資人的收益,無論投資人獎(jiǎng)金如何分配,要使得總收益不低于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對(duì)數(shù)的底數(shù)).

(1)判斷f(x)的單調(diào)性;

(2)當(dāng)f(x)<0在(0,+∞)上恒成立時(shí),求a的取值范圍;

(3)證明:當(dāng)x∈(0,+∞)時(shí), (1+x) <e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)1.1xg(x)ln x1,h(x)x的圖象如圖所示,試分別指出各曲線對(duì)應(yīng)的函數(shù),并比較三個(gè)函數(shù)的增長差異(1,a,b,cd,e為分界點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建全國文明城市,某區(qū)向各事業(yè)行政單位征集“文明過馬路”義務(wù)督導(dǎo)員.從符合條件的600名志愿者中隨機(jī)抽取100名,按年齡作分組如下:,,,,并得到如下頻率分布直方圖.

(I)求圖中的值,并根據(jù)頻率分布直方圖統(tǒng)計(jì)這600名志愿者中年齡在的人數(shù);

(II)在抽取的100名志愿者中按年齡分層抽取5名參加區(qū)電視臺(tái)“文明伴你行”節(jié)目錄制,再從這5名志愿者中隨機(jī)抽取2名到現(xiàn)場(chǎng)分享勸導(dǎo)制止行人闖紅燈的經(jīng)歷,求至少有1名年齡不低于35歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x-+a(2-ln x)(a>0),求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢驗(yàn)?zāi)撤N溶劑的揮發(fā)性,在容器為1升的容器中注入溶液,然后在揮發(fā)的過程中測(cè)量剩余溶液的容積.已知溶劑注入過程中,其容積y(升)與時(shí)間t(分鐘)成正比,且恰在2分鐘注滿;注入完成后,y與t的關(guān)系為為常數(shù)),如圖

(1)求容積y與時(shí)間t之間的函數(shù)關(guān)系式.

(2)當(dāng)容器中的溶液少于8毫升時(shí),試驗(yàn)結(jié)束,則從注入溶液開始,至少需要經(jīng)過多少分鐘,才能結(jié)束試驗(yàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠36名工人的年齡數(shù)據(jù)如下表.

工人編號(hào) 年齡

工人編號(hào) 年齡

工人編號(hào) 年齡

工人編號(hào) 年齡

 1   40

 10   36

 19   27

 28   34

 2   44

 11   31

 20   43

 29   39

 3   40

 12   38

 21   41

 30   43

 4   41

 13   39

 22   37

 31   38

 5   33

 14   43

 23   34

 32   42

 6   40

 15   45

 24   42

 33   53

 7   45

 16   39

 25   37

 34   37

 8   42

 17   38

 26   44

 35   49

 9   43

 18   36

 27   42

 36   39

(1)用系統(tǒng)抽樣法從36名工人中抽取容量為9的樣本,且在第一分段里用隨機(jī)抽樣法抽到的年齡數(shù)據(jù)為44,列出樣本的年齡數(shù)據(jù);

(2)計(jì)算(1)中樣本的均值x和方差s2;

(3)36名工人中年齡在之間有多少人?所占的百分比是多少(精確到0.01%)?

查看答案和解析>>

同步練習(xí)冊(cè)答案