7.已知等比數(shù)列{an}的公比q>1,前n項(xiàng)和為Sn,并且滿足a2+a3+a4=28,a3+2是a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn>254-n•2n+1成立的正整數(shù)n的最小值.

分析 (1)依題意有2(a3+2)=a2+a4,又a2+a3+a4=28,故a3=8.a(chǎn)2+a4=20.由此能夠推導(dǎo)出an=2n
(2)bn=anlog${\;}_{\frac{1}{2}}$an=2n•$lo{g}_{\frac{1}{2}}$2n=-n•2n,由錯(cuò)位相減法可得Sn,再由Sn>254-n•2n+1,解不等式即可得到n的最小值.

解答 解:(1)依題意有2(a3+2)=a2+a4,
又a2+a3+a4=28,解得3=8.
所以a2+a4=20.
于是有$\left\{\begin{array}{l}{{a}_{1}q+{a}_{1}{q}^{3}=20}\\{{a}_{1}{q}^{2}=8}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{q=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=32}\\{q=\frac{1}{2}}\end{array}\right.$,
又{an}是遞增的,故a1=2,q=2.
所以an=2n
(2)bn=anlog${\;}_{\frac{1}{2}}$an=2n•$lo{g}_{\frac{1}{2}}$2n=-n•2n,
-Sn=1•2+2•22+3•23+…+n•2n
-2Sn=1•22+2•23+3•24+…+n•2n+1,
相減可得Sn=2+22+23+…+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=2n+1-2-n•2n+1,
由Sn>254-n•2n+1,可得2n+1>256=28,
即為n+1>8,即n>7,
則n的最小值為8.

點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)和求和公式的運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,靈活地運(yùn)用公式解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,向量$\overrightarrow{OP}$=(n,$\frac{{S}_{n}}{n}$),$\overrightarrow{O{P}_{1}}$=(m,$\frac{{S}_{m}}{m}$),$\overrightarrow{O{P}_{2}}$=(k,$\frac{{S}_{k}}{k}$),且$\overrightarrow{OP}$=λ$\overrightarrow{O{P}_{1}}$+μ$\overrightarrow{O{P}_{2}}$,已知m,n,k∈N*且互不相等,則用m,n,k表示μ=( 。
A.μ=$\frac{k-n}{k-m}$B.μ=$\frac{n-m}{n-k}$C.μ=$\frac{n-m}{k-m}$D.μ=$\frac{k-m}{k-n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某學(xué)校有教職工400名,從中選出40名教職工組成教工代表大會(huì),每位教職工當(dāng)選的概率是$\frac{1}{10}$,其中正確的是( 。
A.10個(gè)教職工中,必有1人當(dāng)選
B.每位教職工當(dāng)選的可能性是$\frac{1}{10}$
C.數(shù)學(xué)教研組共有50人,該組當(dāng)選教工代表的人數(shù)一定是5
D.以上說法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)是(x2+$\frac{1}{2x}$)6展開式的中間項(xiàng),若存在x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]使f(x)≤mx成立,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,$\frac{5}{4}$)B.(-∞,$\frac{5}{4}$]C.($\frac{5}{4}$,+∞)D.[$\frac{5}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓O上三個(gè)不同點(diǎn)A,B,C,若$\overrightarrow{CO}=\overrightarrow{CA}•{sin^2}θ+\overrightarrow{CB}•{cos^2}θ$,則∠ACB=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=log2(1+ax)(a>0且a≠1).
(1)求f(x)的定義域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|x2-2x-3<0},B={x|x2<9},則( 。
A.A?BB.B?AC.A=BD.A∩B=Φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ln(1+x)[2+ln(1+x)]-2x.
(1)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單減;
(2)若不等式(n+$\frac{k}{2}$)ln(1+$\frac{1}{n}$)≤1對(duì)?∈N*都成立,求k+2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在平行六面體ABCD-A1B1C1D1中,O是B1D1的中點(diǎn),求證:B1C∥平面ODC1

查看答案和解析>>

同步練習(xí)冊(cè)答案