如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=,點(diǎn)E是SD上的點(diǎn),且DE=λa(0<λ≤2)。
(1)求證:對(duì)任意的λ∈(0,2),都有AC⊥BE;
(2)設(shè)二面角C-AE-D的大小為θ,直線BE與平面ABCD所成的角為φ,若tanθ·tanφ=1,求λ的值。
解:(1)如圖,連接BE、BD,由底面ABCD是正方形可得AC⊥BD。
SD⊥平面ABCD,
∴BD是BE在平面ABCD上的射影,
∴AC⊥BE。
(2)如圖,由SD⊥平面ABCD知,∠DBE=,
∵SD⊥平面ABCD,CD平面ABCD,
∴SD⊥CD。
又底面ABCD是正方形,
∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD
連接AE、CE,過(guò)點(diǎn)D在平面SAD內(nèi)作DE⊥AE于F,連接CF,則CF⊥AE,
故∠CDF是二面角C-AE-D的平面角,即∠CDF=θ。
在Rt△BDE中,∵BD=2a,DE=

在Rt△ADE中,∵

從而
中,
,得

,解得,即為所求。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC⊥平面SBC.
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是邊長(zhǎng)為3的正方形,SD丄底面ABCD,SB=3
3
,點(diǎn)E、G分別在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)證明平面BG∥平面SDE;
(2)求面SAD與面SBC所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點(diǎn),AD=2,AB=1.SP與平面ABCD所成角為
π4
. 
(1)求證:平面SPD⊥平面SAP;
(2)求三棱錐S-APD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點(diǎn),且SE=2EC,SA=6,AB=2.
(1)求證:平面EBD⊥平面SAC;
(2)求三棱錐E-BCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側(cè)棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
(1)求證:四邊形ABCD是直角梯形;
(2)求異面直線SB與CD所成角的大。
(3)求直線AC與平面SAB所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案