,">

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)(個(gè))

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)(2)中所得線性回歸方程是否理想?

參考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

【答案】1;(2;(3)該小組所得線性回歸方程是理想的.

【解析】試題分析:(1)試驗(yàn)發(fā)生包含的事件是從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有,根據(jù)古典概型的概率公式得到結(jié)果;(2)根據(jù)所給的數(shù)據(jù),求出的平均數(shù),根據(jù)公式求出系數(shù),把的平均數(shù),代入回歸方程求出的值,即可得到線性回歸方程.

試題解析:(1)由題意知本題是一個(gè)古典概型,設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件試驗(yàn)發(fā)生包含的事件是從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的其中滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有種,;(2)由數(shù)據(jù)求得由公式求得 ,再由求得 關(guān)于線性回歸方程為 .

【方法點(diǎn)晴】本題主要考查古典概型概率公式和線性回歸方程求法與應(yīng)用,屬于難題.求回歸直線方程的步驟:依據(jù)樣本數(shù)據(jù)畫出散點(diǎn)圖,確定兩個(gè)變量具有線性相關(guān)關(guān)系;計(jì)算的值;計(jì)算回歸系數(shù);④寫出回歸直線方程為; 回歸直線過(guò)樣本點(diǎn)中心是一條重要性質(zhì),利用線性回歸方程可以估計(jì)總體,幫助我們分析兩個(gè)變量的變化趨勢(shì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)定義域?yàn)?/span>,若對(duì)于任意的,都有,且時(shí),有.

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷并證明函數(shù)的單調(diào)性;

(3)設(shè),若,對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x與相應(yīng)的生產(chǎn)能耗y的幾組對(duì)照數(shù)據(jù)

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.(其中, ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓的左焦點(diǎn),且斜率為的直線交橢圓于, 兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= ,則函數(shù)y=|f(x)|﹣ 的零點(diǎn)個(gè)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為1的正方體中,點(diǎn)分別是棱的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若平面,則線段長(zhǎng)度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱椎中,底面為菱形, 的中點(diǎn).

(1)求證: 平面;

(2)若底面, , , ,求三棱椎的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問(wèn)題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個(gè)月(按30天計(jì)算)總共織布390尺,問(wèn)每天增加的數(shù)量為多少尺?該問(wèn)題的答案為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案