已知數(shù)列滿足,,,是數(shù)列的前項和.
(1)若數(shù)列為等差數(shù)列.
(ⅰ)求數(shù)列的通項;
(ⅱ)若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項和與前項和的大小;
(2)若對任意,恒成立,求實數(shù)的取值范圍.
(1)(ⅰ);(ⅱ)詳見解析;(2).
【解析】
試題分析:(1)(ⅰ)由可得,在遞推關(guān)系式中,由可求,進而求出,于是可利用是等差數(shù)列求出的值,最后可求出的通項公式,(ⅱ)易知,所以要比較和的大小,只需確定的符號和和1的大小關(guān)系問題,前者易知為正,后者作差后判斷符號即可;(2)本題可由遞推關(guān)系式通過變形得出,于是可以看出任意,恒成立,須且只需,從而可以求出的取值范圍.
試題解析:(1)(ⅰ)因為,所以,
即,又,所以, 2分
又因為數(shù)列成等差數(shù)列,所以,即,解得,
所以; 4分
(ⅱ)因為,所以,其前項和,
又因為, 5分
所以其前項和,所以, 7分
當(dāng)或時,;當(dāng)或時,;
當(dāng)時,. 9分
(2)由知,
兩式作差,得, 10分
所以,
再作差得, 11分
所以,當(dāng)時,;
當(dāng)時,;
當(dāng)時,;
當(dāng)時,; 14分
因為對任意,恒成立,所以且,
所以,解得,,
故實數(shù)的取值范圍為. 16分
考點:等差數(shù)列、等比數(shù)列與函數(shù)、不等式的綜合運用.
科目:高中數(shù)學(xué) 來源: 題型:
. 已知數(shù)列滿足
⑴證明:數(shù)列是等比數(shù)列;
⑵求數(shù)列的通項公式;
⑶若數(shù)列滿足證明是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列滿足,,,是數(shù)列 的前項和.
(1)若數(shù)列為等差數(shù)列.
(ⅰ)求數(shù)列的通項;
(ⅱ)若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項和與前項和的大;
(2)若對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇鹽城第一中學(xué)高三第二學(xué)期期初檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列滿足,,,是數(shù)列 的前項和.
(1)若數(shù)列為等差數(shù)列.
①求數(shù)列的通項;
②若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項和與前項和的大小;
(2)若對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高一下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:選擇題
已知數(shù)列滿足,,點是平面上不在上的任意一點,上有不重合的三點、、,又知,則
A.1004 B.2010 C.2009 D.1005 ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com