已知函數(shù)y=f(x)為R上偶函數(shù),當(dāng)x≥0時(shí),f(x)=ax2+bx+c,滿足f(0)=f(4),f(3)=數(shù)學(xué)公式,且當(dāng)x≥0時(shí),函數(shù)f(x)的值域?yàn)閇0,+∞).
(Ⅰ)求函數(shù)f(x)在R上的解析式;
(Ⅱ)做出函數(shù)f(x)的圖象;
(Ⅲ)由f(x)的圖象說明函數(shù)g(x)=2f2(x)-3f(x)+1的零點(diǎn)個(gè)數(shù).


解:(Ⅰ)由f(0)=f(4),f(3)=,得16a+4b=0,且9a+3b+c=,且對稱軸為x=2,因?yàn)閤≥0時(shí),函數(shù)f(x)的值域?yàn)閇0,+∞),
所以f(2)=0,即4a+2b+c=0,所以解得a=,b=-1,c=1.即x≥0時(shí),f(x)=x2-x+1.
當(dāng)x<0,則-x>0,則f(-x)=x2+x+1,因?yàn)楹瘮?shù)y=f(x)為R上偶函數(shù),所以f(-x)=x2+x+1=f(x),即當(dāng)x<0時(shí),f(x)=x2+x+1.
所以
(Ⅱ)因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/363146.png' />,所以作出函數(shù)圖象為:
(Ⅲ)由g(x)=2f2(x)-3f(x)+1=0,解得f(x)=1或f(x)=
令t=f(x),則由圖象可知,當(dāng)f(x)=1時(shí),函數(shù)有三個(gè)交點(diǎn).當(dāng)f(x)=時(shí),函數(shù)有四個(gè)交點(diǎn),所以函數(shù)g(x)=2f2(x)-3f(x)+1的零點(diǎn)個(gè)數(shù)為7個(gè).
分析:(Ⅰ)先由條件確定a,b,c,然后利用奇偶性確定f(x)的解析式.
(Ⅱ)利用解析式,作出二次函數(shù)的圖象.
(Ⅲ)利用換元,并結(jié)合圖象判斷函數(shù)g(x)=2f2(x)-3f(x)+1的零點(diǎn)個(gè)數(shù).
點(diǎn)評:本題主要考查了二次函數(shù)的圖象和性質(zhì)以及函數(shù)與方程的.在解決函數(shù)方程根的個(gè)數(shù)的問題時(shí),經(jīng)常使用數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過點(diǎn)(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對稱圖形一定過點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x<0時(shí),f(x)=x(1-x),那么當(dāng)x>0時(shí),f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0 時(shí),f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習(xí)冊答案