17.已知非空集合A={x|a<x<2a+3},B={x|0<x<1}
(1)若a=-$\frac{1}{2}$,求 A∩B
(2)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

分析 (1)把a(bǔ)的值代入確定出A,求出A與B的交集即可;
(2)根據(jù)A與B的交集為空集,確定出a的范圍即可.

解答 解:(1)把a(bǔ)=-$\frac{1}{2}$代入得:A={x|-$\frac{1}{2}$<x<2},
∵B={x|0<x<1},
∴A∩B={x|0<x<1};
(2)∵A∩B=∅,
∴A=∅或2a+3≤0或a≥1,
解得:a≤-3或a≤-$\frac{3}{2}$或a≥1,
則a的范圍是a≤-$\frac{3}{2}$或a≥1.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)m個(gè)正數(shù)a1,a2,…,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1,a2,a3,…ak-1,ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1,am,am-1,…,ak+1,ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1,a2,…,am的所有項(xiàng)的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak-1+ak=3(ak+1+ak+2+…+am-1+am)?若存在,求出k值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱臺(tái)ABO-A1B1O1中,側(cè)面AOO1A1與側(cè)面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1,OB=3,O1B1=1,OO1=$\sqrt{3}$.
(1)證明:AB1⊥BO1;
(2)求直線AO1與平面AOB1所成的角的正切值;
(3)求二面角O-AB1-O1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)討論f(x)的單調(diào)性與極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)a=0時(shí),關(guān)于x的方程f(x)=m(m∈R)有2個(gè)不同的實(shí)數(shù)根x1,x2,證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某幾何體三視圖如圖所示,則這個(gè)幾何體的體積為$\frac{4\sqrt{3}}{3}$,外接球的體積為$\frac{28\sqrt{21}}{27}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知函數(shù),函數(shù)有相同極值點(diǎn).

(1)求函數(shù)的最大值;

(2)求實(shí)數(shù)的值;

(3)若,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:填空題

已知函數(shù)上的增函數(shù),則實(shí)數(shù)的取值范圍是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù).

(1)若,求函數(shù)處切線方程;

(2)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)集合,,則等于( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案