在平面區(qū)域內(nèi)有一個圓,向該區(qū)域內(nèi)隨機投點,將點落在圓內(nèi)的概率最大時的圓記為⊙M.
(1)試求出⊙M的方程;
(2)設過點P(0,3)作⊙M的兩條切線,切點分別記為A,B;又過P作⊙N:x2+y2-4x+y+4=0的兩條切線,切點分別記為C,D。試確定λ的值,使AB⊥CD。
解:(1)設⊙M的方程為(x-a)2+(y-b)2=r2(r>0),則點(a,b)在所給區(qū)域的內(nèi)部
于是有解得a=3,b=4,r=
所求方程為(x-3)2+(y-4)2=5。
(2)當且僅當PM⊥PN時,AB⊥CD。
,
求得λ=6。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面區(qū)域數(shù)學公式內(nèi)有一個圓,向該區(qū)域內(nèi)隨機投點,將點落在圓內(nèi)的概率最大時的圓記為圓M.
(1)試求出圓M的方程;
(2)設過點P(0,3)作圓M的兩條切線,切點分別記為A、B,又過P作圓N:x2+y2-4x+λy+4=0的兩條切線,切點分別記為C、D,試確定λ的值,使AB⊥CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面區(qū)域內(nèi)有一個圓,向該區(qū)域內(nèi)隨機投點,將點落在圓內(nèi)的概率最大時的圓記為圓M。

(1)試求出圓M的方程;

(2)設過點P(0,3)作圓M的兩條切線,切點分別記為A、B,又過P作圓N:的兩條切線,切點分別記為C、D,試確定的值,使AB⊥CD。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年河南省許昌市長葛三高高考數(shù)學模擬試卷1(理科)(解析版) 題型:解答題

已知平面區(qū)域內(nèi)有一個圓,向該區(qū)域內(nèi)隨機投點,將點落在圓內(nèi)的概率最大時的圓記為⊙M,此時的概率P為   

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省淮安市清江中學高考數(shù)學模擬試卷(解析版) 題型:解答題

在平面區(qū)域內(nèi)有一個圓,向該區(qū)域內(nèi)隨機投點,將點落在圓內(nèi)的概率最大時的圓記為圓M.
(1)試求出圓M的方程;
(2)設過點P(0,3)作圓M的兩條切線,切點分別記為A、B,又過P作圓N:x2+y2-4x+λy+4=0的兩條切線,切點分別記為C、D,試確定λ的值,使AB⊥CD.

查看答案和解析>>

同步練習冊答案