3.直線l1:x-2y+3=0與l2:x-y+1=0的夾角的大小為arctan$\frac{1}{3}$.(結(jié)果用反三角函數(shù)表示)

分析 先求出兩條直線的斜率,再利用兩條直線的夾角公式求得兩條直線的夾角的大。

解答 解:由于直線l1:x-2y+3=0與l2:x-y+1=0的斜率分別為$\frac{1}{2}$,1,設直線l1:x-2y+3=0與l2:x-y+1=0的夾角為θ,
則tanθ=|$\frac{\frac{1}{2}-1}{1+\frac{1}{2}×1}$|=$\frac{1}{3}$,∴θ=arctan$\frac{1}{3}$,
故答案為:arctan$\frac{1}{3}$.

點評 本題主要考查兩條直線的夾角公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}({x+\frac{1}{x}})$,g(x)=$\frac{1}{2}({x-\frac{1}{x}})$.
(1)求函數(shù)h(x)=f(x)+2g(x)的零點;
(2)若直線l:ax+by+c=0(a,b,c為常數(shù))與f(x)的圖象交于不同的兩點A、B,與g(x)的圖象交于不同的兩點C、D,求證:|AC|=|BD|;
(3)求函數(shù)F(x)=[f(x)]2n-[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合$S=\left\{{x\left|{|{x-1}|}\right.≤2,x∈R}\right\},T=\left\{{x\left|{\frac{5}{x+1}≥1}\right.,x∈z}\right\}$,則S∩T等于( 。
A.{x|0<x≤3,x∈z}B.{x|0≤x≤3,x∈z}C.{x|-1≤x≤0,x∈z}D.{x|-1≤x<0,x∈z}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.“|b|<2是“直線y=$\sqrt{3}$x+b與圓x2+y2-4y=0相交”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(-a)=cos2a-$\frac{1}{2}$的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
A.y=|x+2|B.y=|x|+2C.y=-x2+2D.$y={({\frac{1}{2}})^{|x|}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,其左頂點到上頂點的距離為$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l是過橢圓右焦點F且斜率為k的直線,已知直線l交橢圓于M,N兩點,若橢圓上存在一點P,滿足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OP}$,求當$|{\overrightarrow{OP}}|=2|k|$時,k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知命題“?x0∈R,x02+ax0-4a<0”為假命題,則實數(shù)a的取值范圍為( 。
A.[-16,0]B.(-16,0)C.[-4,0]D.(-4,0)

查看答案和解析>>

同步練習冊答案