(2012•福州模擬)對(duì)一個(gè)邊長(zhǎng)為1的正方形進(jìn)行如下操作:第一步,將它分割成3×3方格,接著用中心和四個(gè)角的5個(gè)小正方形,構(gòu)成如圖①所示的幾何圖形,其面積S1=
5
9
;第二步,將圖①的5個(gè)小正方形中的每個(gè)小正方形都進(jìn)行與第一步相同的操作,得到圖②;依此類(lèi)推,到第n步,所得圖形的面積Sn=
5
9
n
.若將以上操作類(lèi)比推廣到棱長(zhǎng)為1的正方體中,則到第n步,所得幾何體的體積Vn=
(
1
3
)
n
(
1
3
)
n
分析:類(lèi)比正方形求面積,可得正方體求體積,得出所有體積構(gòu)成以
1
3
為首項(xiàng),
1
3
為公比的等比數(shù)列,從而可得結(jié)論.
解答:解:推廣到棱長(zhǎng)為1的正方體中,第一步,將它分割成3×3×3個(gè)正方體,其中心和八個(gè)角的9個(gè)小正方體,其體積為
9
27
=
1
3
,第二步,執(zhí)行同樣的操作,其體積為(
1
3
)2
,依此類(lèi)推,到第n步,所有體積構(gòu)成以
1
3
為首項(xiàng),
1
3
為公比的等比數(shù)列,
∴到第n步,所得幾何體的體積Vn=(
1
3
)
n

故答案為(
1
3
)
n
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列通項(xiàng)的求解,解題的關(guān)鍵是得出所有體積構(gòu)成以
1
3
為首項(xiàng),
1
3
為公比的等比數(shù)列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州模擬)在數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)(n∈N*)在直線y=2x上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=log2an,求數(shù)列
1bn×bn+1
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州模擬)在約束條件
x≤1
y≤2
x+y-1≥0
下,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則ab的最大值等于
1
8
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州模擬)假設(shè)某班級(jí)教室共有4扇窗戶(hù),在每天上午第三節(jié)課上課預(yù)備鈴聲響起時(shí),每扇窗戶(hù)或被敞開(kāi)或被關(guān)閉,且概率均為0.5,記此時(shí)教室里敞開(kāi)的窗戶(hù)個(gè)數(shù)為X.
(Ⅰ)求X的分布列;
(Ⅱ)若此時(shí)教室里有兩扇或兩扇以上的窗戶(hù)被關(guān)閉,班長(zhǎng)就會(huì)將關(guān)閉的窗戶(hù)全部敞開(kāi),否則維持原狀不變.記每天上午第三節(jié)課上課時(shí)該教室里敞開(kāi)的窗戶(hù)個(gè)數(shù)為y,求y的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州模擬)sin47°cosl3°+sinl3°sin43°的值等于
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州模擬)如圖,在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°.點(diǎn)E、F分別在邊CD、CB上,點(diǎn)E與點(diǎn)C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求證:BD⊥平面POA;
(Ⅱ)記三棱錐P-ABD體積為V1,四棱錐P-BDEF體積為V2.求當(dāng)PB取得最小值時(shí)的V1:V2值.

查看答案和解析>>

同步練習(xí)冊(cè)答案