【題目】已知函數(shù),.

1)求的極值點;

2)求方程的根的個數(shù).

【答案】1時,僅有一個極小值;(2)當時,原方程有2個根;當時,原方程有3個根;當時,原方程有4個根

【解析】

1)求導得到,計算函數(shù)的單調(diào)區(qū)間得到極值.

2)令,求導得到上時,單調(diào)遞減,為偶函數(shù),根據(jù)零點存在定理得到答案.

1的定義域為,由,得,

內(nèi)為減函數(shù),在內(nèi)為增函數(shù),

僅有一個極小值.

2)令

.

時,

時,.

因此,上時,單調(diào)遞減,

,上時,單調(diào)遞增.

為偶函數(shù),當時,的極小值為.

時,,當時,,

時,,當時,.

由根的存在性定理知,方程在一定有根,

的根的情況為:

時,即時,原方程有2個根;

時,即時,原方程有3個根.

時,即時,原方程有4個根.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA底面ABC,ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.

(1)求證:PA平面QBC;

(2)若PQ平面QBC,求銳二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=4x的焦點作直線AB交拋物線于AB,求AB中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某啤酒廠要將一批鮮啤酒用汽車從所在城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,運費由廠家承擔.若廠家恰能在約定日期(××日)將啤酒送到,則城市乙的銷售商一次性支付給廠家40萬元;若在約定日期前送到,每提前一天銷售商將多支付給廠家2萬;若在約定日期后送到,每遲到一天銷售商將少支付給廠家2萬元.為保證啤酒新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運送.已知下表內(nèi)的信息:

汽車行駛路線

在不堵車的情況下到達城市乙所需時間(天)

在堵車的情況下到達城市乙所需時間(天)

堵車的概率

運費(萬元)

公路1

1

4

2

公路2

2

3

1

1)記汽車選擇公路1運送啤酒時廠家獲得的毛收入為X(單位:萬元),求X的分布列和EX;

2)若,選擇哪條公路運送啤酒廠家獲得的毛收人更多?

(注:毛收入=銷售商支付給廠家的費用-運費).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)六個從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?

(2)把5件不同產(chǎn)品擺成一排,若產(chǎn)品與產(chǎn)品相鄰,且產(chǎn)品與產(chǎn)品不相鄰,則不同的擺法有幾種?

(3)某次聯(lián)歡會要安排3個歌舞類節(jié)目、2個小品類節(jié)目和1個相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求實數(shù)的值;

(2)若有兩個極值點,,求的取值范圍并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓C:(>>0)的右焦點為F(10),且過點(1),過點F且不與軸重合的直線與橢圓C交于A,B兩點,點P在橢圓上,且滿足.

(1)求橢圓C的標準方程;

(2),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)a=-3時,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖像上有動點,函數(shù)圖像上有動點.兩點同時從縱坐標的初始位置出發(fā),沿著各自函數(shù)圖像向右上方運動至兩點的縱坐標值再次相等,且始終滿足,則在此運動過程中兩點的距離的取值范圍是______

查看答案和解析>>

同步練習冊答案